AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MPC_Hh_
#define DLIB_MPC_Hh_
#include "mpc_abstract.h"
#include "../matrix.h"
#include "../algs.h"
namespace dlib
{
template <
long S_,
long I_,
unsigned long horizon_
>
class mpc
{
public:
const static long S = S_;
const static long I = I_;
const static unsigned long horizon = horizon_;
mpc(
)
{
A = 0;
B = 0;
C = 0;
Q = 0;
R = 0;
lower = 0;
upper = 0;
max_iterations = 0;
eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i)
{
target[i].set_size(A.nr());
target[i] = 0;
controls[i].set_size(B.nc());
controls[i] = 0;
}
lambda = 0;
}
mpc (
const matrix<double,S,S>& A_,
const matrix<double,S,I>& B_,
const matrix<double,S,1>& C_,
const matrix<double,S,1>& Q_,
const matrix<double,I,1>& R_,
const matrix<double,I,1>& lower_,
const matrix<double,I,1>& upper_
) : A(A_), B(B_), C(C_), Q(Q_), R(R_), lower(lower_), upper(upper_)
{
// make sure requires clause is not broken
DLIB_ASSERT(A.nr() > 0 && B.nc() > 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t B.nc(): " << B.nc()
);
DLIB_ASSERT(A.nr() == A.nc() &&
A.nr() == B.nr() &&
A.nr() == C.nr() &&
A.nr() == Q.nr(),
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t A.nc(): " << A.nc()
<< "\n\t B.nr(): " << B.nr()
<< "\n\t C.nr(): " << C.nr()
<< "\n\t Q.nr(): " << Q.nr()
);
DLIB_ASSERT(
B.nc() == R.nr() &&
B.nc() == lower.nr() &&
B.nc() == upper.nr() ,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t B.nr(): " << B.nr()
<< "\n\t B.nc(): " << B.nc()
<< "\n\t lower.nr(): " << lower.nr()
<< "\n\t upper.nr(): " << upper.nr()
);
DLIB_ASSERT(min(Q) >= 0 &&
min(R) > 0 &&
min(upper-lower) >= 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(Q): " << min(Q)
<< "\n\t min(R): " << min(R)
<< "\n\t min(upper-lower): " << min(upper-lower)
);
max_iterations = 10000;
eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i)
{
target[i].set_size(A.nr());
target[i] = 0;
controls[i].set_size(B.nc());
controls[i] = 0;
}
// Bound the maximum eigenvalue of the hessian by computing the trace of the
// hessian matrix.
lambda = sum(R)*horizon;
matrix<double,S,S> temp = diagm(Q);
for (unsigned long c = 0; c < horizon; ++c)
{
lambda += trace(trans(B)*temp*B);
Q_diag[horizon-c-1] = diag(trans(B)*temp*B);
temp = trans(A)*temp*A + diagm(Q);
}
}
const matrix<double,S,S>& get_A (
) const { return A; }
const matrix<double,S,I>& get_B (
) const { return B; }
const matrix<double,S,1>& get_C (
) const { return C; }
const matrix<double,S,1>& get_Q (
) const { return Q; }
const matrix<double,I,1>& get_R (
) const { return R; }
const matrix<double,I,1>& get_lower_constraints (
) const { return lower; }
const matrix<double,I,1>& get_upper_constraints (
) const { return upper; }
void set_target (
const matrix<double,S,1>& val,
const unsigned long time
)
{
DLIB_ASSERT(time < horizon,
"\t void mpc::set_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);
target[time] = val;
}
void set_target (
const matrix<double,S,1>& val
)
{
for (unsigned long i = 0; i < horizon; ++i)
target[i] = val;
}
void set_last_target (
const matrix<double,S,1>& val
)
{
set_target(val, horizon-1);
}
const matrix<double,S,1>& get_target (
const unsigned long time
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(time < horizon,
"\t matrix mpc::get_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);
return target[time];
}
unsigned long get_max_iterations (
) const { return max_iterations; }
void set_max_iterations (
unsigned long max_iter
)
{
max_iterations = max_iter;
}
void set_epsilon (
double eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\t void mpc::set_epsilon(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_
);
eps = eps_;
}
double get_epsilon (
) const
{
return eps;
}
matrix<double,I,1> operator() (
const matrix<double,S,1>& current_state
)
{
// make sure requires clause is not broken
DLIB_ASSERT(min(R) > 0 && A.nr() == current_state.size(),
"\t matrix mpc::operator(current_state)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(R): " << min(R)
<< "\n\t A.nr(): " << A.nr()
<< "\n\t current_state.size(): " << current_state.size()
);
// Shift the inputs over by one time step so we can use them to warm start the
// optimizer.
for (unsigned long i = 1; i < horizon; ++i)
controls[i-1] = controls[i];
solve_linear_mpc(current_state);
for (unsigned long i = 1; i < horizon; ++i)
target[i-1] = target[i];
return controls[0];
}
private:
// These temporary variables here just to avoid reallocating them on each call to
// operator().
matrix<double,S,1> M[horizon];
matrix<double,I,1> MM[horizon];
matrix<double,I,1> df[horizon];
matrix<double,I,1> v[horizon];
matrix<double,I,1> v_old[horizon];
void solve_linear_mpc (
const matrix<double,S,1>& initial_state
)
{
// make it so MM == trans(K)*Q*(M-target)
M[0] = A*initial_state + C;
for (unsigned long i = 1; i < horizon; ++i)
M[i] = A*M[i-1] + C;
for (unsigned long i = 0; i < horizon; ++i)
M[i] = diagm(Q)*(M[i]-target[i]);
for (long i = (long)horizon-2; i >= 0; --i)
M[i] += trans(A)*M[i+1];
for (unsigned long i = 0; i < horizon; ++i)
MM[i] = trans(B)*M[i];
unsigned long iter = 0;
for (; iter < max_iterations; ++iter)
{
// compute current gradient and put it into df.
// df == H*controls + MM;
M[0] = B*controls[0];
for (unsigned long i = 1; i < horizon; ++i)
M[i] = A*M[i-1] + B*controls[i];
for (unsigned long i = 0; i < horizon; ++i)
M[i] = diagm(Q)*M[i];
for (long i = (long)horizon-2; i >= 0; --i)
M[i] += trans(A)*M[i+1];
for (unsigned long i = 0; i < horizon; ++i)
df[i] = MM[i] + trans(B)*M[i] + diagm(R)*controls[i];
// Check the stopping condition, which is the magnitude of the largest element
// of the gradient.
double max_df = 0;
unsigned long max_t = 0;
long max_v = 0;
for (unsigned long i = 0; i < horizon; ++i)
{
for (long j = 0; j < controls[i].size(); ++j)
{
// if this variable isn't an active constraint then we care about it's
// derivative.
if (!((controls[i](j) <= lower(j) && df[i](j) > 0) ||
(controls[i](j) >= upper(j) && df[i](j) < 0)))
{
if (std::abs(df[i](j)) > max_df)
{
max_df = std::abs(df[i](j));
max_t = i;
max_v = j;
}
}
}
}
if (max_df < eps)
break;
// We will start out by doing a little bit of coordinate descent because it
// allows us to optimize individual variables exactly. Since we are warm
// starting each iteration with a really good solution this helps speed
// things up a lot.
const unsigned long smo_iters = 50;
if (iter < smo_iters)
{
if (Q_diag[max_t](max_v) == 0) continue;
// Take the optimal step but just for one variable.
controls[max_t](max_v) = -(df[max_t](max_v)-Q_diag[max_t](max_v)*controls[max_t](max_v))/Q_diag[max_t](max_v);
controls[max_t](max_v) = put_in_range(lower(max_v), upper(max_v), controls[max_t](max_v));
// If this is the last SMO iteration then don't forget to initialize v
// for the gradient steps.
if (iter+1 == smo_iters)
{
for (unsigned long i = 0; i < horizon; ++i)
v[i] = controls[i];
}
}
else
{
// Take a projected gradient step.
for (unsigned long i = 0; i < horizon; ++i)
{
v_old[i] = v[i];
v[i] = dlib::clamp(controls[i] - 1.0/lambda * df[i], lower, upper);
controls[i] = dlib::clamp(v[i] + (std::sqrt(lambda)-1)/(std::sqrt(lambda)+1)*(v[i]-v_old[i]), lower, upper);
}
}
}
}
unsigned long max_iterations;
double eps;
matrix<double,S,S> A;
matrix<double,S,I> B;
matrix<double,S,1> C;
matrix<double,S,1> Q;
matrix<double,I,1> R;
matrix<double,I,1> lower;
matrix<double,I,1> upper;
matrix<double,S,1> target[horizon];
double lambda; // abound on the largest eigenvalue of the hessian matrix.
matrix<double,I,1> Q_diag[horizon];
matrix<double,I,1> controls[horizon];
};
}
#endif // DLIB_MPC_Hh_