AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CuDNN_H_
#define DLIB_DNN_CuDNN_H_
#ifdef DLIB_USE_CUDA
#include "cuda_errors.h"
#include <memory>
#include "cuda_data_ptr.h"
namespace dlib
{
class tensor;
class resizable_tensor;
namespace cuda
{
// -----------------------------------------------------------------------------------
class tensor_descriptor
{
/*!
Each tensor object will carry a tensor_descriptor in it when compiled with
CUDA.
!*/
public:
// not copyable
tensor_descriptor(const tensor_descriptor&) = delete;
tensor_descriptor& operator=(const tensor_descriptor&) = delete;
// but is movable
tensor_descriptor(tensor_descriptor&& item) : tensor_descriptor() { swap(item); }
tensor_descriptor& operator=(tensor_descriptor&& item) { swap(item); return *this; }
tensor_descriptor();
~tensor_descriptor();
void set_size(
int n,
int k,
int nr,
int nc
);
/*!
ensures
- if any of the arguments are 0 then they are all set to 0 in the tensor.
!*/
void get_size (
int& n,
int& k,
int& nr,
int& nc
) const;
const void* get_handle (
) const { return handle; }
private:
void swap(tensor_descriptor& item) { std::swap(handle, item.handle); }
void* handle;
};
// ------------------------------------------------------------------------------------
void add(
float beta,
tensor& dest,
float alpha,
const tensor& src
);
// ------------------------------------------------------------------------------------
void assign_conv_bias_gradient (
tensor& grad,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void batch_normalize_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
);
void batch_normalize (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
);
void batch_normalize_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
);
// ------------------------------------------------------------------------------------
void batch_normalize_conv_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
);
void batch_normalize_conv (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
);
void batch_normalize_conv_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
);
// ------------------------------------------------------------------------------------
class tensor_conv
{
public:
tensor_conv(const tensor_conv&) = delete;
tensor_conv& operator=(const tensor_conv&) = delete;
tensor_conv();
void clear(
);
~tensor_conv (
);
void operator() (
const bool add_to_output,
tensor& output,
const tensor& data,
const tensor& filters
);
void operator() (
const bool add_to_output,
resizable_tensor& output,
const tensor& data,
const tensor& filters
);
void get_gradient_for_data (
const bool add_to_output,
const tensor& gradient_input,
const tensor& filters,
tensor& data_gradient
);
void get_gradient_for_filters (
const bool add_to_output,
const tensor& gradient_input,
const tensor& data,
tensor& filters_gradient
);
void setup(
const tensor& data,
const tensor& filters,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
private:
// These variables record the type of data given to the last call to setup().
int stride_y;
int stride_x;
int padding_y;
int padding_x;
long data_num_samples, data_k, data_nr, data_nc;
long filters_num_samples, filters_k, filters_nr, filters_nc;
void* filter_handle;
void* conv_handle;
// dimensions of the output tensor from operator()
int out_num_samples;
int out_k;
int out_nr;
int out_nc;
// sets the three _algo fields.
void select_best_algorithms(const tensor& data, const tensor_descriptor& dest_desc);
int forward_algo;
int backward_data_algo;
int backward_filters_algo;
size_t forward_workspace_size_in_bytes;
size_t backward_data_workspace_size_in_bytes;
size_t backward_filters_workspace_size_in_bytes;
cuda_data_void_ptr forward_workspace;
cuda_data_void_ptr backward_data_workspace;
cuda_data_void_ptr backward_filters_workspace;
};
// ------------------------------------------------------------------------------------
class pooling
{
public:
pooling(const pooling&) = delete;
pooling& operator=(const pooling&) = delete;
pooling (
);
~pooling(
);
void clear(
);
void setup_max_pooling(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
void setup_avg_pooling(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
bool does_max_pooling(
) const { return do_max_pooling; }
void operator() (
resizable_tensor& dest,
const tensor& src
);
void get_gradient(
const tensor& gradient_input,
const tensor& dest,
const tensor& src,
tensor& grad
);
private:
void setup(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x,
int pooling_mode
);
void* handle;
int window_height;
int window_width;
int stride_y;
int stride_x;
int padding_y;
int padding_x;
bool do_max_pooling;
};
// ------------------------------------------------------------------------------------
void softmax (
tensor& dest,
const tensor& src
);
void softmax_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void softmax_all (
tensor& dest,
const tensor& src
);
void softmax_all_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void sigmoid (
tensor& dest,
const tensor& src
);
void sigmoid_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void relu (
tensor& dest,
const tensor& src
);
void relu_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void tanh (
tensor& dest,
const tensor& src
);
void tanh_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
}
}
#endif // DLIB_USE_CUDA
#endif // DLIB_DNN_CuDNN_H_