AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html xmlns:gcse="googleCustomSearch"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="shortcut icon" href="dlib-icon.ico"><meta name="verify-v1" content="02MiiaFNVzS5/u0eQhsy3/knioFHsia1X3DXRpHkE6I="><meta name="google-site-verification" content="DGSSJMKDomaDaDTIRJ8jDkv0YMx9Cz7OESbXHjjr6Jw"><title>dlib C++ Library</title><script type="text/javascript" src="dlib.js"></script><link rel="stylesheet" type="text/css" href="dlib.css"></head><body><a name="top"></a><div id="page_header"><a href="http://dlib.net"><img src="dlib-logo.png"></a></div><div id="top_content"><div id="main_menu" class="menu"><div class="menu_top"><b>The Library</b><ul class="tree"><li><a href="algorithms.html" class="menu">Algorithms</a></li><li><a href="api.html" class="menu">API Wrappers</a></li><li><a href="bayes.html" class="menu">Bayesian Nets</a></li><li><a href="compression.html" class="menu">Compression</a></li><li><a href="containers.html" class="menu">Containers</a></li><li><a href="graph_tools.html" class="menu">Graph Tools</a></li><li><a href="imaging.html" class="menu">Image Processing</a></li><li><a href="linear_algebra.html" class="menu">Linear Algebra</a></li><li><a href="ml.html" class="menu">Machine Learning</a></li><li><a href="metaprogramming.html" class="menu">Metaprogramming</a></li><li><a href="other.html" class="menu">Miscellaneous</a></li><li><a href="network.html" class="menu">Networking</a></li><li><a href="optimization.html" class="menu">Optimization</a></li><li><a href="parsing.html" class="menu">Parsing</a></li></ul><br><b>Help/Info</b><ul class="tree"><li><a href="http://blog.dlib.net" class="menu">Dlib Blog</a></li><li><a onclick="Toggle(this)" class="sub menu"><img src="plus.gif">Examples: C++</a><ul style="display:none;"><li><a href="3d_point_cloud_ex.cpp.html" class="menu">3D Point Cloud</a></li><li><a href="assignment_learning_ex.cpp.html" class="menu">Assignment Learning</a></li><li><a href="file_to_code_ex.cpp.html" class="menu">Base64 Encoder</a></li><li><a href="bayes_net_from_disk_ex.cpp.html" class="menu">Bayesian Network From Disk</a></li><li><a href="bayes_net_gui_ex.cpp.html" class="menu">Bayesian Network GUI</a></li><li><a href="bayes_net_ex.cpp.html" class="menu">Bayesian Network</a></li><li><a href="bridge_ex.cpp.html" class="menu">Bridge</a></li><li><a href="bsp_ex.cpp.html" class="menu">BSP</a></li><li><a href="svm_c_ex.cpp.html" class="menu">C-Support Vector Machine</a></li><li><a href="compress_stream_ex.cpp.html#_top" class="menu">Cmd Line Parser</a></li><li><a href="compress_stream_ex.cpp.html" class="menu">Compress Stream</a></li><li><a href="config_reader_ex.cpp.html" class="menu">Config File Reader</a></li><li><a href="custom_trainer_ex.cpp.html" class="menu">Custom Trainers</a></li><li><a href="dnn_face_recognition_ex.cpp.html" class="menu">Deep Face Recognition</a></li><li><a href="dnn_dcgan_train_ex.cpp.html" class="menu">Deep Learning DCGAN</a></li><li><a href="dnn_mmod_dog_hipsterizer.cpp.html" class="menu">Deep Learning Dog Hipsterizer</a></li><li><a href="dnn_mmod_face_detection_ex.cpp.html" class="menu">Deep Learning Face Detection</a></li><li><a href="dnn_imagenet_ex.cpp.html" class="menu">Deep Learning Imagenet Classifier</a></li><li><a href="dnn_imagenet_train_ex.cpp.html" class="menu">Deep Learning Imagenet Trainer </a></li><li><a href="dnn_inception_ex.cpp.html" class="menu">Deep Learning Inception</a></li><li><a href="dnn_instance_segmentation_train_ex.cpp.html" class="menu">Deep Learning Instance Segmentation Trainer</a></li><li><a href="dnn_instance_segmentation_ex.cpp.html" class="menu">Deep Learning Instance Segmentation</a></li><li><a href="dnn_introduction_ex.cpp.html" class="menu">Deep Learning Introduction Part 1</a></li><li><a href="dnn_introduction2_ex.cpp.html" class="menu">Deep Learning Introduction Part 2</a></li><li><a href="dnn_introduction3_ex.cpp.html" class="menu">Deep Learning Introduction Part 3</a></li><li><a href="dnn_mmod_ex.cpp.html" class="menu">Deep Learning Max-Margin Object Detection</a></li><li><a href="dnn_mmod_find_cars2_ex.cpp.html" class="menu">Deep Learning Multi-Class Vehicle Detection</a></li><li><a href="dnn_semantic_segmentation_train_ex.cpp.html" class="menu">Deep Learning Semantic Segmentation Trainer</a></li><li><a href="dnn_semantic_segmentation_ex.cpp.html" class="menu">Deep Learning Semantic Segmentation</a></li><li><a href="dnn_mmod_train_find_cars_ex.cpp.html" class="menu">Deep Learning Vehicle Detection Trainer</a></li><li><a href="dnn_mmod_find_cars_ex.cpp.html" class="menu">Deep Learning Vehicle Detection</a></li><li><a href="dnn_metric_learning_ex.cpp.html" class="menu">Deep Metric Learning Introduction</a></li><li><a href="dnn_metric_learning_on_images_ex.cpp.html" class="menu">Deep Metric Learning on Images</a></li><li><a href="dir_nav_ex.cpp.html" class="menu">Directory Navigation</a></li><li><a href="empirical_kernel_map_ex.cpp.html" class="menu">Empirical Kernel Map</a></li><li><a href="face_detection_ex.cpp.html" class="menu">Face Detection</a></li><li><a href="face_landmark_detection_ex.cpp.html" class="menu">Face Landmark Detection</a></li><li><a href="fhog_ex.cpp.html" class="menu">FHOG Feature Extraction</a></li><li><a href="fhog_object_detector_ex.cpp.html" class="menu">FHOG Object Detection</a></li><li><a href="graph_labeling_ex.cpp.html" class="menu">Graph Labeling</a></li><li><a href="gui_api_ex.cpp.html" class="menu">GUI</a></li><li><a href="hough_transform_ex.cpp.html" class="menu">Hough Transform</a></li><li><a href="server_http_ex.cpp.html" class="menu">HTTP Server</a></li><li><a href="image_ex.cpp.html" class="menu">Image</a></li><li><a href="iosockstream_ex.cpp.html" class="menu">IO Socket Streams</a></li><li><a href="server_iostream_ex.cpp.html" class="menu">IO Streams Server</a></li><li><a href="kcentroid_ex.cpp.html" class="menu">Kernel Centroid</a></li><li><a href="kkmeans_ex.cpp.html" class="menu">Kernel K-Means Clustering</a></li><li><a href="krr_regression_ex.cpp.html" class="menu">Kernel Ridge Regression</a></li><li><a href="krls_filter_ex.cpp.html" class="menu">Kernel RLS Filtering</a></li><li><a href="krls_ex.cpp.html" class="menu">Kernel RLS Regression</a></li><li><a href="krr_classification_ex.cpp.html" class="menu">KRR Classification</a></li><li><a href="learning_to_track_ex.cpp.html" class="menu">Learning to Track</a></li><li><a href="max_cost_assignment_ex.cpp.html" class="menu">Linear Assignment Problems</a></li><li><a href="linear_manifold_regularizer_ex.cpp.html" class="menu">Linear Manifold Regularizer</a></li><li><a href="mpc_ex.cpp.html" class="menu">Linear Model Predictive Control</a></li><li><a href="logger_ex_2.cpp.html" class="menu">Logger Advanced</a></li><li><a href="logger_custom_output_ex.cpp.html" class="menu">Logger Custom Output</a></li><li><a href="logger_ex.cpp.html" class="menu">Logger</a></li><li><a href="matrix_expressions_ex.cpp.html" class="menu">Matrix Expressions</a></li><li><a href="matrix_ex.cpp.html" class="menu">Matrix</a></li><li><a href="member_function_pointer_ex.cpp.html" class="menu">Member Function Pointer</a></li><li><a href="model_selection_ex.cpp.html" class="menu">Model Selection</a></li><li><a href="multiclass_classification_ex.cpp.html" class="menu">Multiclass Classification</a></li><li><a href="multithreaded_object_ex.cpp.html" class="menu">Multithreaded Object</a></li><li><a href="mlp_ex.cpp.html" class="menu">Neural Network</a></li><li><a href="least_squares_ex.cpp.html" class="menu">Non-Linear Least Squares</a></li><li><a href="svm_ex.cpp.html" class="menu">Nu-Support Vector Machine</a></li><li><a href="integrate_function_adapt_simp_ex.cpp.html" class="menu">Numerical Integration</a></li><li><a href="object_detector_advanced_ex.cpp.html" class="menu">Object Detector Advanced</a></li><li><a href="object_detector_ex.cpp.html" class="menu">Object Detector</a></li><li><a href="one_class_classifiers_ex.cpp.html" class="menu">One Class Classifiers</a></li><li><a href="svm_pegasos_ex.cpp.html" class="menu">Online SVM</a></li><li><a href="optimization_ex.cpp.html" class="menu">Optimization</a></li><li><a href="parallel_for_ex.cpp.html" class="menu">Parallel For Loops</a></li><li><a href="pipe_ex_2.cpp.html" class="menu">Pipe 2</a></li><li><a href="pipe_ex.cpp.html" class="menu">Pipe</a></li><li><a href="quantum_computing_ex.cpp.html" class="menu">Quantum Computing</a></li><li><a href="queue_ex.cpp.html" class="menu">Queue</a></li><li><a href="random_cropper_ex.cpp.html" class="menu">Random Cropper</a></li><li><a href="rank_features_ex.cpp.html" class="menu">Rank Features</a></li><li><a href="rvm_ex.cpp.html" class="menu">Relevance Vector Classification</a></li><li><a href="rvm_regression_ex.cpp.html" class="menu">Relevance Vector Regression</a></li><li><a href="running_stats_ex.cpp.html" class="menu">Running Stats</a></li><li><a href="sequence_labeler_ex.cpp.html" class="menu">Sequence Labeling</a></li><li><a href="sequence_segmenter_ex.cpp.html" class="menu">Sequence Segmentation</a></li><li><a href="sockets_ex.cpp.html" class="menu">Sockets</a></li><li><a href="sockstreambuf_ex.cpp.html" class="menu">Sockstreambuf</a></li><li><a href="svm_sparse_ex.cpp.html" class="menu">Sparse Vectors</a></li><li><a href="sqlite_ex.cpp.html" class="menu">SQLite</a></li><li><a href="std_allocator_ex.cpp.html" class="menu">Std C++ Allocator</a></li><li><a href="svm_struct_ex.cpp.html" class="menu">Structural Support Vector Machines</a></li><li><a href="svr_ex.cpp.html" class="menu">Support Vector Regression</a></li><li><a href="surf_ex.cpp.html" class="menu">SURF</a></li><li><a href="svm_rank_ex.cpp.html" class="menu">SVM-Rank</a></li><li><a href="thread_function_ex.cpp.html" class="menu">Thread Function</a></li><li><a href="thread_pool_ex.cpp.html" class="menu">Thread Pool</a></li><li><a href="threaded_object_ex.cpp.html" class="menu">Threaded Object</a></li><li><a href="threads_ex.cpp.html" class="menu">Threads</a></li><li><a href="timer_ex.cpp.html" class="menu">Timer</a></li><li><a href="train_object_detector.cpp.html" class="menu">Train Object Detector</a></li><li><a href="train_shape_predictor_ex.cpp.html" class="menu">Train Shape Predictor</a></li><li><a href="using_custom_kernels_ex.cpp.html" class="menu">Using Custom Kernels</a></li><li><a href="video_tracking_ex.cpp.html" class="menu">Video Object Tracking</a></li><li><a href="webcam_face_pose_ex.cpp.html" class="menu">Webcam Face Pose Estimation</a></li><li><a href="xml_parser_ex.cpp.html" class="menu">XML Parser</a></li></ul></li><li><a onclick="Toggle(this)" class="sub menu"><img src="plus.gif">Examples: Python</a><ul style="display:none;"><li><a href="svm_binary_classifier.py.html" class="menu">Binary Classification</a></li><li><a href="cnn_face_detector.py.html" class="menu">CNN Face Detector</a></li><li><a href="face_alignment.py.html" class="menu">Face Alignment</a></li><li><a href="face_clustering.py.html" class="menu">Face Clustering</a></li><li><a href="face_detector.py.html" class="menu">Face Detector</a></li><li><a href="face_jitter.py.html" class="menu">Face Jittering/Augmentation</a></li><li><a href="face_landmark_detection.py.html" class="menu">Face Landmark Detection</a></li><li><a href="face_recognition.py.html" class="menu">Face Recognition</a></li><li><a href="find_candidate_object_locations.py.html" class="menu">Find Candidate Object Locations</a></li><li><a href="global_optimization.py.html" class="menu">Global Optimization</a></li><li><a href="max_cost_assignment.py.html" class="menu">Linear Assignment Problems</a></li><li><a href="sequence_segmenter.py.html" class="menu">Sequence Segmenter</a></li><li><a href="svm_struct.py.html" class="menu">Structural Support Vector Machines</a></li><li><a href="svm_rank.py.html" class="menu">SVM-Rank</a></li><li><a href="train_object_detector.py.html" class="menu">Train Object Detector</a></li><li><a href="train_shape_predictor.py.html" class="menu">Train Shape Predictor</a></li><li><a href="correlation_tracker.py.html" class="menu">Video Object Tracking</a></li></ul></li><li><a href="faq.html" class="menu">FAQ</a></li><li><a href="index.html" class="menu">Home</a></li><li><a href="compile.html" class="menu">How to compile</a></li><li><a href="howto_contribute.html" class="menu">How to contribute</a></li><li><a href="term_index.html" class="menu">Index</a></li><li><a href="intro.html" class="menu">Introduction</a></li><li><a href="license.html" class="menu">License</a></li><li><a href="python/index.html" class="menu">Python API</a></li><li><a href="books.html" class="menu">Suggested Books</a></li><li><a href="http://sourceforge.net/p/dclib/wiki/Known_users/" class="menu">Who uses dlib?</a></li></ul><br><b>Current Release</b><ul class="tree"><li><a href="change_log.html" class="menu">Change Log</a></li><li><a href="release_notes.html" class="menu">Release Notes</a></li><li>Version: 19.22</li></ul><br></div><div class="menu_footer">
Last Modified:<br>Mar 14, 2019</div></div><div id="main_text"><div id="main_text_body"><center><a name="Using%20dlib%20from%20Python"></a><h1>Using dlib from Python</h1></center><p>
Either run <tt>pip install dlib --verbose</tt> or grab the latest sources
from github, go to the base folder of the dlib repository,
and run <tt>python setup.py install</tt>. Once either of these commands
finishes running you are ready to use dlib from Python. Note
that you need to have CMake and a working C++ compiler
installed for this to work.
</p><p>
Also note that various optional features like GUI support (e.g.
dlib.image_window) and CUDA acceleration will be automatically
enabled or disabled based on what is available on your computer.
When you run the install command it will print messages telling
you what it is using. Read those messages and take appropriate
action if you don't like the results. For example, Linux and
OSX users may have to install libX11 to use the GUI tools. If
you care about this then read the messages since they tell you
how to get these optional features installed.
</p><p>
Alternatively, if you want to add more python bindings to dlib's
python interface then you probably want to avoid the setup.py file
and work directly using CMake. In particular, dlib's python API is
built by the CMake project in the tools/python folder. You build
this project using the usual CMake commands and when compiled it
outputs the dlib shared library that defines the python API for dlib.
</p><br><br><center><a name="Using%20dlib%20from%20C++"></a><h1>Using dlib from C++</h1></center>
The best way to compile a program that uses dlib is to use <a href="http://www.cmake.org">CMake</a>. For
example, the following commands will compile the example programs on any operating
system:
<pre class="code_box">
cd examples
mkdir build
cd build
cmake ..
cmake --build . --config Release
</pre>
Note that you need to have a C++11 compiler installed on your system. There are free C++11 compilers
for most operating systems. For example, Visual Studio is free on Windows and GCC is free and
works well on Mac OS X and Linux systems. If you have multiple compilers/IDEs installed then you can
tell CMake which one you want it to use via the -G option.
<p>
The <a href="examples/CMakeLists.txt.html">examples/CMakeLists.txt</a> file tells CMake how to build
the examples. You can create your own projects by starting with this file and editing it however you like.
You can also perform additional configuration of a cmake project using the cmake-gui or ccmake tool. For example,
if you are using dlib's face detector then you should turn on either SSE4 or AVX instructions since this
makes it run much faster (also see <a href="faq.html#Whyisdlibslow">this FAQ</a>).
</p><p>
Finally, note that when using Visual Studio, CMake will by default generate a 32bit executable.
This means the programs you compile will only be able to use 2GB of RAM. To avoid this, you need
to tell CMake to generate a 64bit executable. You do this by using a command like
<pre class="code_box">cmake -G "Visual Studio 14 2015 Win64" -T host=x64 ..</pre> instead of <pre class="code_box">cmake ..</pre>
You can see the list of valid arguments to <tt>-G</tt> by running <tt>cmake</tt> with no options. Note also the <tt>-T host=x64</tt>
option, which tells Visual Studio to let the compiler use more than 2GB of RAM. That is important if you don't want the compiler to
crash from running out of RAM in some situations.
</p><br><a name="Compiling%20C++%20Examples%20Without%20CMake"></a><h2>Compiling C++ Examples Without CMake</h2><p>
In most cases, to use this library all you have to do is extract it somewhere, make
sure the folder <i>containing</i> the dlib folder is in your include path, and
finally add dlib/all/source.cpp to your
project.
</p><p>
Again, note that you should <b><i>not</i></b> add the dlib folder itself to your compiler's include path.
Doing so will cause the
build to fail because of name collisions (e.g. dlib/string.h with string.h from the standard library).
Instead you should add the folder that contains the dlib folder to your include search path and then use
include statements of the form <tt>#include &lt;dlib/queue.h&gt;</tt>. This will ensure that everything
builds correctly.
</p><p>
Note also that if you want to work with jpeg/png/gif files using dlib then you will
need to link your program with libjpeg, libpng, and/or libgif. You also need to tell dlib
about this by defining the DLIB_JPEG_SUPPORT, DLIB_PNG_SUPPORT, and DLIB_GIF_SUPPORT preprocessor directives.
How you "link to libjpeg/libpng/libgif" varies from platform to platform. On UNIX machines you
usually just add a -ljpeg, -lpng, or -lgif switch to your compiler (after installing the libraries).
On windows it's less well defined. So dlib comes with a copy of libjpeg and libpng in the dlib/external
folder so you can statically compile them into your application if no system wide version
is available on your machine. If all this talk about linking is confusing to you then
just use CMake. It will set this all up for you.
</p><p>
Dlib is also capable of using any optimized BLAS or LAPACK libraries that are
installed on your system. Linking to these libraries will make many things run
faster. To do this you define the DLIB_USE_BLAS and/or DLIB_USE_LAPACK preprocessor
directives and then link your program with whatever BLAS or LAPACK libraries you
have. If you use CMake it will set this up automatically.
</p><a name="Compiling%20on%20Linux%20From%20Command%20Line"></a><h3>Compiling on Linux From Command Line</h3>
From within the examples folder, you can compile nearly all of the examples with a single command like so:
<pre class="code_box">
g++ -std=c++11 -O3 -I.. ../dlib/all/source.cpp -lpthread -lX11 example_program_name.cpp
</pre>
On non-Linux systems like Solaris, you might have to link to other libraries. For example, I have seen systems
where it was also necessary to supply -lnsl or -lsocket options to g++. Additionally, the X11 development
library isn't installed on Ubuntu by default. So if you require it and are using Ubuntu you can install
it by typing:
<pre class="code_box">
sudo apt-get install libx11-dev
</pre><a name="Compiling%20on%20Windows%20Using%20GCC"></a><h3>Compiling on Windows Using GCC</h3><p>
The commands for gcc on windows are the same as above but you may also have to link
(via the -l option) to the following libraries: gdi32, comctl32, user32, winmm, ws2_32, or imm32.
</p><a name="Compiling%20on%20Windows%20Using%20Visual%20Studio%202015%20or%20Newer"></a><h3>Compiling on Windows Using Visual Studio 2015 or Newer</h3><p>
All you need to do is create an empty console project. Then add dlib/all/source.cpp to it and add the
folder containing the dlib folder to the #include search path. Then you can compile any example program
by adding it to your project.
</p><p>
Again, note that dlib will only be able to work with jpeg and png files if you link
in libjpeg and libpng. In Visual Studio, the easiest way to do this is to add all the
libjpeg, libpng, and zlib source files in the dlib/external folder into your project and also define the
DLIB_PNG_SUPPORT and DLIB_JPEG_SUPPORT preprocessor directives. If you don't know
how to configure Visual Studio then you should use CMake as shown above since it will
take care of everything automatically.
</p><br><a name="Installing%20dlib%20as%20a%20precompiled%20library"></a><h2>Installing dlib as a precompiled library</h2><p>
Dlib's cmake scripts contain the standard install target. So you
can use CMake to install dlib system wide as a precompiled static or
shared library just like you would any other C++ library.
However, most users should use CMake as described at the top of this
page (specifically as shown in the <a href="examples/CMakeLists.txt.html">examples project</a>) since
that's the simplest method. In particular, it allows you to turn
dlib's debugging modes on and off whenever you want, which is
something you really should use since dlib's debugging modes are one
of its strongest features.
</p><p>
We should also make a special note of the problems associated with
using precompiled C++ libraries with Visual Studio. <b>The TLDR is
that you should not use precompiled libraries (i.e. .lib files)
with Visual Studio unless you really know what you are doing.</b>
This is not a dlib limitation. It has nothing to do with dlib.
It's just how Visual Studio works. Please do not ask me about it.
If you want to understand this you should read the Visual Studio
documentation and <a href="http://siomsystems.com/mixing-visual-studio-versions/">this excellent overview</a> in particular.
</p><p>
However, for the lazy, I'll summarize the issue with Visual Studio here.
The problem is that Visual Studio has multiple incompatible
runtimes and it is illegal to mix object code compiled with
different runtimes in a single application. For example, if you
compile a C++ library in Visual Studio's "Release" mode then it is
illegal to use in an application compiled in Visual Studio's
"Debug" mode.
<p></p>
This is made especially bad since each version of
Visual Studio contains its own set of runtimes, at least
8 different runtimes per each version of Visual Studio, and all of
them are incompatible with each other. Most Visual Studio users
seem to be completely unaware of this, many who contact me demonstrably
do not even understand what the words "runtime" or "object code" even
refer to. So the issue of ensuring that all object code (and
precompiled libraries) in an application use the same runtimes
is made extremely difficult when using precompiled libraries.
However, if you just use CMake as described at the top of this
page then it will never be an issue, which is one of the reasons I recommend it.
</p><p>
To summarize, if you don't understand what the above paragraphs are talking
about then you absolutely should not be installing dlib as a precompiled library
in Visual Studio. Instead, go to the top of this page and read the instructions
there. Follow those instructions, it's super easy and will Just Work.
</p><br><center><a name="Miscellaneous%20Preprocessor%20Directives"></a><h1>Miscellaneous Preprocessor Directives</h1></center><p>
In addition to the preprocessor directives mentioned above, there
are a few more you can supply during the build process to cause the
library to build in various optional ways. By default, the library
will always do something reasonable, but they are listed here in
the event that you need to use them.
</p><a name="ENABLE_ASSERTS"></a><a name="#define%20ENABLE_ASSERTS"></a><h3>#define ENABLE_ASSERTS</h3><p>
Defining this directive causes all the <a href="metaprogramming.html#DLIB_ASSERT">DLIB_ASSERT</a> macros to
be active. If you are using Visual Studio or CMake then ENABLE_ASSERTS will be automatically enabled
for you when you compile in debug mode. However, if you are using a different build system then you
might have to manually enable it if you want to turn the asserts on.
</p><a name="DLIB_ISO_CPP_ONLY"></a><a name="#define%20DLIB_ISO_CPP_ONLY"></a><h3>#define DLIB_ISO_CPP_ONLY</h3><p>
This is a #define directive that you can set to cause the library to exclude all non ISO C++ code (The things in the <a href="api.html">API wrappers</a> section and any objects that depend on those wrappers).
This is useful if you are trying to build on a system that isn't fully supported by the library or if you
just decide you don't want any of that stuff compiled into your program for your own reasons.
</p><a name="DLIB_NO_GUI_SUPPORT"></a><a name="#define%20DLIB_NO_GUI_SUPPORT"></a><h3>#define DLIB_NO_GUI_SUPPORT</h3><p>
This is just like the DLIB_ISO_CPP_ONLY option except that it excludes only the GUI part of the library.
An example of when you might want to use this would be if you don't need GUI support and you are building
on a UNIX platform that doesn't have the X11 headers installed.
</p><a name="DLIB_THREAD_POOL_TIMEOUT"></a><a name="#define%20DLIB_THREAD_POOL_TIMEOUT%20&lt;time-in-milliseconds&gt;"></a><h3>#define DLIB_THREAD_POOL_TIMEOUT &lt;time-in-milliseconds&gt;</h3><p>
If you use dlib to create your threads then you receive the benefit of the dlib dynamic thread pool (Note that the
dlib::<a href="api.html#thread_pool">thread_pool</a> object is something else unrelated to this so don't confuse
the two). This pool
enables dlib to spawn new threads very rapidly since it draws threads back out of its thread pool when
the pool isn't empty.
</p><p>
Thus, when a thread that was created by dlib ends it actually goes back into the dlib thread pool
and waits DLIB_THREAD_POOL_TIMEOUT milliseconds before totally terminating and releasing its resources back
to the operating system. The default timeout used by this library is 30,000 milliseconds (30 seconds). You
may however change this to whatever you like by defining DLIB_THREAD_POOL_TIMEOUT to some new value.
</p></div></div></div><div id="bottom_content"></div></body></html>