Aging_MouthReplace / dlibs /docs /compression.html
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html xmlns:gcse="googleCustomSearch"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="shortcut icon" href="dlib-icon.ico"><meta name="verify-v1" content="02MiiaFNVzS5/u0eQhsy3/knioFHsia1X3DXRpHkE6I="><meta name="google-site-verification" content="DGSSJMKDomaDaDTIRJ8jDkv0YMx9Cz7OESbXHjjr6Jw"><title>dlib C++ Library
- Data Compression</title><script type="text/javascript" src="dlib.js"></script><link rel="stylesheet" type="text/css" href="dlib.css"></head><body><a name="top"></a><div id="page_header"><a href="http://dlib.net"><img src="dlib-logo.png"></a></div><div id="top_content"><div id="main_menu" class="menu"><div class="menu_top"><b>The Library</b><ul class="tree"><li><a href="algorithms.html" class="menu">Algorithms</a></li><li><a href="api.html" class="menu">API Wrappers</a></li><li><a href="bayes.html" class="menu">Bayesian Nets</a></li><li><a href="compression.html" class="menu">Compression</a></li><li><a href="containers.html" class="menu">Containers</a></li><li><a href="graph_tools.html" class="menu">Graph Tools</a></li><li><a href="imaging.html" class="menu">Image Processing</a></li><li><a href="linear_algebra.html" class="menu">Linear Algebra</a></li><li><a href="ml.html" class="menu">Machine Learning</a></li><li><a href="metaprogramming.html" class="menu">Metaprogramming</a></li><li><a href="other.html" class="menu">Miscellaneous</a></li><li><a href="network.html" class="menu">Networking</a></li><li><a href="optimization.html" class="menu">Optimization</a></li><li><a href="parsing.html" class="menu">Parsing</a></li></ul><br><b>Help/Info</b><ul class="tree"><li><a href="http://blog.dlib.net" class="menu">Dlib Blog</a></li><li><a onclick="Toggle(this)" class="sub menu"><img src="plus.gif">Examples: C++</a><ul style="display:none;"><li><a href="3d_point_cloud_ex.cpp.html" class="menu">3D Point Cloud</a></li><li><a href="assignment_learning_ex.cpp.html" class="menu">Assignment Learning</a></li><li><a href="file_to_code_ex.cpp.html" class="menu">Base64 Encoder</a></li><li><a href="bayes_net_from_disk_ex.cpp.html" class="menu">Bayesian Network From Disk</a></li><li><a href="bayes_net_gui_ex.cpp.html" class="menu">Bayesian Network GUI</a></li><li><a href="bayes_net_ex.cpp.html" class="menu">Bayesian Network</a></li><li><a href="bridge_ex.cpp.html" class="menu">Bridge</a></li><li><a href="bsp_ex.cpp.html" class="menu">BSP</a></li><li><a href="svm_c_ex.cpp.html" class="menu">C-Support Vector Machine</a></li><li><a href="compress_stream_ex.cpp.html#_top" class="menu">Cmd Line Parser</a></li><li><a href="compress_stream_ex.cpp.html" class="menu">Compress Stream</a></li><li><a href="config_reader_ex.cpp.html" class="menu">Config File Reader</a></li><li><a href="custom_trainer_ex.cpp.html" class="menu">Custom Trainers</a></li><li><a href="dnn_face_recognition_ex.cpp.html" class="menu">Deep Face Recognition</a></li><li><a href="dnn_dcgan_train_ex.cpp.html" class="menu">Deep Learning DCGAN</a></li><li><a href="dnn_mmod_dog_hipsterizer.cpp.html" class="menu">Deep Learning Dog Hipsterizer</a></li><li><a href="dnn_mmod_face_detection_ex.cpp.html" class="menu">Deep Learning Face Detection</a></li><li><a href="dnn_imagenet_ex.cpp.html" class="menu">Deep Learning Imagenet Classifier</a></li><li><a href="dnn_imagenet_train_ex.cpp.html" class="menu">Deep Learning Imagenet Trainer </a></li><li><a href="dnn_inception_ex.cpp.html" class="menu">Deep Learning Inception</a></li><li><a href="dnn_instance_segmentation_train_ex.cpp.html" class="menu">Deep Learning Instance Segmentation Trainer</a></li><li><a href="dnn_instance_segmentation_ex.cpp.html" class="menu">Deep Learning Instance Segmentation</a></li><li><a href="dnn_introduction_ex.cpp.html" class="menu">Deep Learning Introduction Part 1</a></li><li><a href="dnn_introduction2_ex.cpp.html" class="menu">Deep Learning Introduction Part 2</a></li><li><a href="dnn_introduction3_ex.cpp.html" class="menu">Deep Learning Introduction Part 3</a></li><li><a href="dnn_mmod_ex.cpp.html" class="menu">Deep Learning Max-Margin Object Detection</a></li><li><a href="dnn_mmod_find_cars2_ex.cpp.html" class="menu">Deep Learning Multi-Class Vehicle Detection</a></li><li><a href="dnn_semantic_segmentation_train_ex.cpp.html" class="menu">Deep Learning Semantic Segmentation Trainer</a></li><li><a href="dnn_semantic_segmentation_ex.cpp.html" class="menu">Deep Learning Semantic Segmentation</a></li><li><a href="dnn_mmod_train_find_cars_ex.cpp.html" class="menu">Deep Learning Vehicle Detection Trainer</a></li><li><a href="dnn_mmod_find_cars_ex.cpp.html" class="menu">Deep Learning Vehicle Detection</a></li><li><a href="dnn_metric_learning_ex.cpp.html" class="menu">Deep Metric Learning Introduction</a></li><li><a href="dnn_metric_learning_on_images_ex.cpp.html" class="menu">Deep Metric Learning on Images</a></li><li><a href="dir_nav_ex.cpp.html" class="menu">Directory Navigation</a></li><li><a href="empirical_kernel_map_ex.cpp.html" class="menu">Empirical Kernel Map</a></li><li><a href="face_detection_ex.cpp.html" class="menu">Face Detection</a></li><li><a href="face_landmark_detection_ex.cpp.html" class="menu">Face Landmark Detection</a></li><li><a href="fhog_ex.cpp.html" class="menu">FHOG Feature Extraction</a></li><li><a href="fhog_object_detector_ex.cpp.html" class="menu">FHOG Object Detection</a></li><li><a href="graph_labeling_ex.cpp.html" class="menu">Graph Labeling</a></li><li><a href="gui_api_ex.cpp.html" class="menu">GUI</a></li><li><a href="hough_transform_ex.cpp.html" class="menu">Hough Transform</a></li><li><a href="server_http_ex.cpp.html" class="menu">HTTP Server</a></li><li><a href="image_ex.cpp.html" class="menu">Image</a></li><li><a href="iosockstream_ex.cpp.html" class="menu">IO Socket Streams</a></li><li><a href="server_iostream_ex.cpp.html" class="menu">IO Streams Server</a></li><li><a href="kcentroid_ex.cpp.html" class="menu">Kernel Centroid</a></li><li><a href="kkmeans_ex.cpp.html" class="menu">Kernel K-Means Clustering</a></li><li><a href="krr_regression_ex.cpp.html" class="menu">Kernel Ridge Regression</a></li><li><a href="krls_filter_ex.cpp.html" class="menu">Kernel RLS Filtering</a></li><li><a href="krls_ex.cpp.html" class="menu">Kernel RLS Regression</a></li><li><a href="krr_classification_ex.cpp.html" class="menu">KRR Classification</a></li><li><a href="learning_to_track_ex.cpp.html" class="menu">Learning to Track</a></li><li><a href="max_cost_assignment_ex.cpp.html" class="menu">Linear Assignment Problems</a></li><li><a href="linear_manifold_regularizer_ex.cpp.html" class="menu">Linear Manifold Regularizer</a></li><li><a href="mpc_ex.cpp.html" class="menu">Linear Model Predictive Control</a></li><li><a href="logger_ex_2.cpp.html" class="menu">Logger Advanced</a></li><li><a href="logger_custom_output_ex.cpp.html" class="menu">Logger Custom Output</a></li><li><a href="logger_ex.cpp.html" class="menu">Logger</a></li><li><a href="matrix_expressions_ex.cpp.html" class="menu">Matrix Expressions</a></li><li><a href="matrix_ex.cpp.html" class="menu">Matrix</a></li><li><a href="member_function_pointer_ex.cpp.html" class="menu">Member Function Pointer</a></li><li><a href="model_selection_ex.cpp.html" class="menu">Model Selection</a></li><li><a href="multiclass_classification_ex.cpp.html" class="menu">Multiclass Classification</a></li><li><a href="multithreaded_object_ex.cpp.html" class="menu">Multithreaded Object</a></li><li><a href="mlp_ex.cpp.html" class="menu">Neural Network</a></li><li><a href="least_squares_ex.cpp.html" class="menu">Non-Linear Least Squares</a></li><li><a href="svm_ex.cpp.html" class="menu">Nu-Support Vector Machine</a></li><li><a href="integrate_function_adapt_simp_ex.cpp.html" class="menu">Numerical Integration</a></li><li><a href="object_detector_advanced_ex.cpp.html" class="menu">Object Detector Advanced</a></li><li><a href="object_detector_ex.cpp.html" class="menu">Object Detector</a></li><li><a href="one_class_classifiers_ex.cpp.html" class="menu">One Class Classifiers</a></li><li><a href="svm_pegasos_ex.cpp.html" class="menu">Online SVM</a></li><li><a href="optimization_ex.cpp.html" class="menu">Optimization</a></li><li><a href="parallel_for_ex.cpp.html" class="menu">Parallel For Loops</a></li><li><a href="pipe_ex_2.cpp.html" class="menu">Pipe 2</a></li><li><a href="pipe_ex.cpp.html" class="menu">Pipe</a></li><li><a href="quantum_computing_ex.cpp.html" class="menu">Quantum Computing</a></li><li><a href="queue_ex.cpp.html" class="menu">Queue</a></li><li><a href="random_cropper_ex.cpp.html" class="menu">Random Cropper</a></li><li><a href="rank_features_ex.cpp.html" class="menu">Rank Features</a></li><li><a href="rvm_ex.cpp.html" class="menu">Relevance Vector Classification</a></li><li><a href="rvm_regression_ex.cpp.html" class="menu">Relevance Vector Regression</a></li><li><a href="running_stats_ex.cpp.html" class="menu">Running Stats</a></li><li><a href="sequence_labeler_ex.cpp.html" class="menu">Sequence Labeling</a></li><li><a href="sequence_segmenter_ex.cpp.html" class="menu">Sequence Segmentation</a></li><li><a href="sockets_ex.cpp.html" class="menu">Sockets</a></li><li><a href="sockstreambuf_ex.cpp.html" class="menu">Sockstreambuf</a></li><li><a href="svm_sparse_ex.cpp.html" class="menu">Sparse Vectors</a></li><li><a href="sqlite_ex.cpp.html" class="menu">SQLite</a></li><li><a href="std_allocator_ex.cpp.html" class="menu">Std C++ Allocator</a></li><li><a href="svm_struct_ex.cpp.html" class="menu">Structural Support Vector Machines</a></li><li><a href="svr_ex.cpp.html" class="menu">Support Vector Regression</a></li><li><a href="surf_ex.cpp.html" class="menu">SURF</a></li><li><a href="svm_rank_ex.cpp.html" class="menu">SVM-Rank</a></li><li><a href="thread_function_ex.cpp.html" class="menu">Thread Function</a></li><li><a href="thread_pool_ex.cpp.html" class="menu">Thread Pool</a></li><li><a href="threaded_object_ex.cpp.html" class="menu">Threaded Object</a></li><li><a href="threads_ex.cpp.html" class="menu">Threads</a></li><li><a href="timer_ex.cpp.html" class="menu">Timer</a></li><li><a href="train_object_detector.cpp.html" class="menu">Train Object Detector</a></li><li><a href="train_shape_predictor_ex.cpp.html" class="menu">Train Shape Predictor</a></li><li><a href="using_custom_kernels_ex.cpp.html" class="menu">Using Custom Kernels</a></li><li><a href="video_tracking_ex.cpp.html" class="menu">Video Object Tracking</a></li><li><a href="webcam_face_pose_ex.cpp.html" class="menu">Webcam Face Pose Estimation</a></li><li><a href="xml_parser_ex.cpp.html" class="menu">XML Parser</a></li></ul></li><li><a onclick="Toggle(this)" class="sub menu"><img src="plus.gif">Examples: Python</a><ul style="display:none;"><li><a href="svm_binary_classifier.py.html" class="menu">Binary Classification</a></li><li><a href="cnn_face_detector.py.html" class="menu">CNN Face Detector</a></li><li><a href="face_alignment.py.html" class="menu">Face Alignment</a></li><li><a href="face_clustering.py.html" class="menu">Face Clustering</a></li><li><a href="face_detector.py.html" class="menu">Face Detector</a></li><li><a href="face_jitter.py.html" class="menu">Face Jittering/Augmentation</a></li><li><a href="face_landmark_detection.py.html" class="menu">Face Landmark Detection</a></li><li><a href="face_recognition.py.html" class="menu">Face Recognition</a></li><li><a href="find_candidate_object_locations.py.html" class="menu">Find Candidate Object Locations</a></li><li><a href="global_optimization.py.html" class="menu">Global Optimization</a></li><li><a href="max_cost_assignment.py.html" class="menu">Linear Assignment Problems</a></li><li><a href="sequence_segmenter.py.html" class="menu">Sequence Segmenter</a></li><li><a href="svm_struct.py.html" class="menu">Structural Support Vector Machines</a></li><li><a href="svm_rank.py.html" class="menu">SVM-Rank</a></li><li><a href="train_object_detector.py.html" class="menu">Train Object Detector</a></li><li><a href="train_shape_predictor.py.html" class="menu">Train Shape Predictor</a></li><li><a href="correlation_tracker.py.html" class="menu">Video Object Tracking</a></li></ul></li><li><a href="faq.html" class="menu">FAQ</a></li><li><a href="index.html" class="menu">Home</a></li><li><a href="compile.html" class="menu">How to compile</a></li><li><a href="howto_contribute.html" class="menu">How to contribute</a></li><li><a href="term_index.html" class="menu">Index</a></li><li><a href="intro.html" class="menu">Introduction</a></li><li><a href="license.html" class="menu">License</a></li><li><a href="python/index.html" class="menu">Python API</a></li><li><a href="books.html" class="menu">Suggested Books</a></li><li><a href="http://sourceforge.net/p/dclib/wiki/Known_users/" class="menu">Who uses dlib?</a></li></ul><br><b>Current Release</b><ul class="tree"><li><a href="change_log.html" class="menu">Change Log</a></li><li><a href="release_notes.html" class="menu">Release Notes</a></li><li>Version: 19.22</li></ul><br></div><div class="menu_footer">
Last Modified:<br>Sep 13, 2015</div></div><div id="main_text"><div id="main_text_title">Data Compression</div><div id="main_text_body"><p>
This page contains a bunch of objects that implement various parts of compression algorithms.
They can be put together in different ways to construct many different algorithms.
Note that the <a href="#compress_stream">compress_stream</a> object contains complete compression algorithms. So if you
just want to compress some data then you can easily use that object and not bother with the others.
</p><p>
In the column to the right you can see benchmark data for each of the compress_stream
typedefs. The times measured are the time it takes to compress and then
decompress each file. It was run on a 3.0ghz P4. For reference see the Canterbury corpus
<a href="http://corpus.canterbury.ac.nz/">web site</a>.
</p></div></div><div id="right_menu" class="menu"><div class="menu_top"><b>Objects</b><ul class="tree"><li><a href="#compress_stream" class="menu">compress_stream</a></li><li><a href="#conditioning_class" class="menu">conditioning_class</a></li><li><a href="#entropy_decoder" class="menu">entropy_decoder</a></li><li><a href="#entropy_decoder_model" class="menu">entropy_decoder_model</a></li><li><a href="#entropy_encoder" class="menu">entropy_encoder</a></li><li><a href="#entropy_encoder_model" class="menu">entropy_encoder_model</a></li><li><a href="#lz77_buffer" class="menu">lz77_buffer</a></li><li><a href="#lzp_buffer" class="menu">lzp_buffer</a></li></ul><br><b>Benchmarks</b><ul class="tree"><li><a href="kernel_1a.html" class="menu">kernel_1a</a></li><li><a href="kernel_1b.html" class="menu">kernel_1b</a></li><li><a href="kernel_1c.html" class="menu">kernel_1c</a></li><li><a href="kernel_1da.html" class="menu">kernel_1da</a></li><li><a href="kernel_1db.html" class="menu">kernel_1db</a></li><li><a href="kernel_1ea.html" class="menu">kernel_1ea</a></li><li><a href="kernel_1eb.html" class="menu">kernel_1eb</a></li><li><a href="kernel_1ec.html" class="menu">kernel_1ec</a></li><li><a href="kernel_2a.html" class="menu">kernel_2a</a></li><li><a href="kernel_3a.html" class="menu">kernel_3a</a></li><li><a href="kernel_3b.html" class="menu">kernel_3b</a></li></ul><br></div><div class="menu_footer"></div></div></div><div id="bottom_content"><a name="compress_stream"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">compress_stream</h1><BR><BR>
This object is pretty straight forward. It has no state and just
contains the functions compress and decompress.
They do just what their names imply to iostream objects.
<BR><BR>C++ Example Programs: <a href="compress_stream_ex.cpp.html">compress_stream_ex.cpp</a>,
<a href="file_to_code_ex.cpp.html">file_to_code_ex.cpp</a><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/compress_stream/compress_stream_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/compress_stream.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/compress_stream/compress_stream_kernel_1.h.html">compress_stream_kernel_1</a>:
<br>
This implementation is done using the <a href="#entropy_encoder_model">entropy_encoder_model</a> and
<a href="#entropy_decoder_model">entropy_decoder_model</a> objects.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_1b and entropy_decoder_model_kernel_1b</td></tr><tr><td valign="top"><div class="tdn">kernel_1b</div></td><td width="100%">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_2b and entropy_decoder_model_kernel_2b </td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_3b and entropy_decoder_model_kernel_3b </td></tr><tr><td valign="top"><div class="tdn">kernel_1da</div></td><td width="100%">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_4a and entropy_decoder_model_kernel_4a </td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1db</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_4b and entropy_decoder_model_kernel_4b </td></tr><tr><td valign="top"><div class="tdn">kernel_1ea</div></td><td width="100%">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_5a and entropy_decoder_model_kernel_5a </td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1eb</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_5b and entropy_decoder_model_kernel_5b </td></tr><tr><td valign="top"><div class="tdn">kernel_1ec</div></td><td width="100%">is a typedef for compress_stream_kernel_1 which uses entropy_decoder_model_kernel_5c and entropy_decoder_model_kernel_5c </td></tr></table></div></blockquote><blockquote><a href="dlib/compress_stream/compress_stream_kernel_2.h.html">compress_stream_kernel_2</a>:
<br>
This implementation is done using the <a href="#entropy_encoder_model">entropy_encoder_model</a> and
<a href="#entropy_decoder_model">entropy_decoder_model</a> objects. It also uses the
<a href="#lz77_buffer">lz77_buffer</a> object. It uses the entropy coder models to
encode symbols when there is no match found by the lz77_buffer.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_2 which uses entropy_encoder_model_kernel_2b, entropy_decoder_model_kernel_2b, and lz77_buffer_kernel_2a.</td></tr></table></div></blockquote><blockquote><a href="dlib/compress_stream/compress_stream_kernel_3.h.html">compress_stream_kernel_3</a>:
<br>
This implementation is done using the <a href="#lzp_buffer">lzp_buffer</a> object and
<a href="other.html#crc32">crc32</a> object. It does not use any sort of entropy coding, instead
a byte aligned output method is used.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for compress_stream_kernel_3 which uses lzp_buffer_kernel_1.</td></tr><tr><td valign="top"><div class="tdn">kernel_3b</div></td><td width="100%">is a typedef for compress_stream_kernel_3 which uses lzp_buffer_kernel_2.</td></tr></table></div></blockquote></div><a name="conditioning_class"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">conditioning_class</h1><BR><BR>
This object represents a conditioning class used for arithmetic style
compression. It maintains the cumulative counts which are needed
by the entropy_encoder and entropy_decoder objects below.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/conditioning_class/conditioning_class_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/conditioning_class.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/conditioning_class/conditioning_class_kernel_1.h.html">conditioning_class_kernel_1</a>:
<br>
This implementation is done using an array to store all the counts and they are summed
whenever the cumulative counts are requested. It's pretty straight forward.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/conditioning_class/conditioning_class_kernel_2.h.html">conditioning_class_kernel_2</a>:
<br>
This implementation is done using a binary tree where each node in the tree represents one symbol and
contains that symbols count and the sum of all the counts for the nodes to the left. This way
when you request a cumulative count it can be computed by visiting log n nodes where n is the
size of the alphabet.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_2</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/conditioning_class/conditioning_class_kernel_3.h.html">conditioning_class_kernel_3</a>:
<br>
This implementation is done using an array to store all the counts and they are
summed whenever the cumulative counts are requested. The counts are also kept in
semi-sorted order to speed up the calculation of the cumulative count.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_3</td></tr><tr><td valign="top"><div class="tdn">kernel_3a_c</div></td><td width="100%">
is a typedef for kernel_3a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/conditioning_class/conditioning_class_kernel_4.h.html">conditioning_class_kernel_4</a>:
<br>
This implementation is done using a linked list to store all the counts and they are
summed whenever the cumulative counts are requested. The counts are also kept in
semi-sorted order to speed up the calculation of the cumulative count. This implementation
also uses the <a href="other.html#memory_manager">memory_manager</a> component to create a
memory pool of linked list nodes. This implementation is especially useful for high order
contexts and/or very large and sparse alphabets.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_4 with a memory pool of 10,000 nodes.</td></tr><tr><td valign="top"><div class="tdn">kernel_4a_c</div></td><td width="100%">
is a typedef for kernel_4a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4b</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_4 with a memory pool of 100,000 nodes.</td></tr><tr><td valign="top"><div class="tdn">kernel_4b_c</div></td><td width="100%">
is a typedef for kernel_4b that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_4 with a memory pool of 1,000,000 nodes.</td></tr><tr><td valign="top"><div class="tdn">kernel_4c_c</div></td><td width="100%">
is a typedef for kernel_4c that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4d</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for conditioning_class_kernel_4 with a memory pool of 10,000,000 nodes.</td></tr><tr><td valign="top"><div class="tdn">kernel_4d_c</div></td><td width="100%">
is a typedef for kernel_4d that checks its preconditions.
</td></tr></table></div></blockquote></div><a name="entropy_decoder"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">entropy_decoder</h1><BR><BR>
This object represents an entropy decoder. E.g. the decoding part of
an arithmetic coder.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/entropy_decoder/entropy_decoder_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/entropy_decoder.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/entropy_decoder/entropy_decoder_kernel_1.h.html">entropy_decoder_kernel_1</a>:
<br>
This object is implemented using arithmetic coding and is done in the
straight forward way using integers and fixed precision math.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder/entropy_decoder_kernel_2.h.html">entropy_decoder_kernel_2</a>:
<br>
This object is implemented using "range" coding and is done
in the straight forward way using integers and fixed precision math.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_kernel_2</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr></table></div></blockquote></div><a name="entropy_decoder_model"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">entropy_decoder_model</h1><BR><BR>
This object represents some kind of statistical model. You
can use it to read symbols from an entropy_decoder and it will calculate
the cumulative counts/probabilities and manage contexts for you.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/entropy_decoder_model.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_1.h.html">entropy_decoder_model_kernel_1</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_model_kernel_1 that uses conditioning_class_kernel_1a</td></tr><tr><td valign="top"><div class="tdn">kernel_1b</div></td><td width="100%">is a typedef for entropy_decoder_model_kernel_1 that uses conditioning_class_kernel_2a</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_model_kernel_1 that uses conditioning_class_kernel_3a</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_2.h.html">entropy_decoder_model_kernel_2</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-1-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_model_kernel_2 that uses conditioning_class_kernel_1a</td></tr><tr><td valign="top"><div class="tdn">kernel_2b</div></td><td width="100%">is a typedef for entropy_decoder_model_kernel_2 that uses conditioning_class_kernel_2a</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_model_kernel_2 that uses conditioning_class_kernel_3a</td></tr><tr><td valign="top"><div class="tdn">kernel_2d</div></td><td width="100%">is a typedef for entropy_decoder_model_kernel_2 that uses conditioning_class_kernel_2a for its order-0
context and conditioning_class_kernel_4b for its order-1 context.</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_3.h.html">entropy_decoder_model_kernel_3</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-2-1-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_decoder_model_kernel_3 that uses conditioning_class_kernel_1a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr><tr><td valign="top"><div class="tdn">kernel_3b</div></td><td width="100%"> is a typedef for entropy_decoder_model_kernel_3 that uses conditioning_class_kernel_2a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3c</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_decoder_model_kernel_3 that uses conditioning_class_kernel_3a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_4.h.html">entropy_decoder_model_kernel_4</a>:
<br>
This object is implemented using a variation of the PPM algorithm described by Alistair Moffat in his paper "Implementing
the PPM data compression scheme."
It provides template arguments to select the maximum order and maximum memory to use. For speed,
exclusions are not used. The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_decoder_model_kernel_4 with the max order set to 4 and the max number
of nodes set to 200,000</td></tr><tr><td valign="top"><div class="tdn">kernel_4b</div></td><td width="100%"> is a typedef for entropy_decoder_model_kernel_4 with the max order set to 5 and the max number
of nodes set to 1,000,000</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_5.h.html">entropy_decoder_model_kernel_5</a>:
<br>
This object is implemented using a variation of the PPM algorithm described by Alistair Moffat in his paper "Implementing
the PPM data compression scheme."
It provides template arguments to select the maximum order and maximum memory to use. Exclusions are used. The escape method used is method D.
This implementation is very much like kernel_4 except it is tuned for higher compression rather than speed.
This also uses Dmitry Shkarin's Information Inheritance scheme.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_5a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_decoder_model_kernel_5 with the max order set to 4 and the max number
of nodes set to 200,000</td></tr><tr><td valign="top"><div class="tdn">kernel_5b</div></td><td width="100%"> is a typedef for entropy_decoder_model_kernel_5 with the max order set to 5 and the max number
of nodes set to 1,000,000</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_5c</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_decoder_model_kernel_5 with the max order set to 7 and the max number
of nodes set to 2,500,000</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_decoder_model/entropy_decoder_model_kernel_6.h.html">entropy_decoder_model_kernel_6</a>:
<br>
This object just assigns every symbol the same probability. I.e. it uses an <i>order-(-1)</i> model.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_6a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_decoder_model_kernel_6</td></tr></table></div></blockquote></div><a name="entropy_encoder"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">entropy_encoder</h1><BR><BR>
This object represents an entropy encoder. E.g. the encoding part of
an arithmetic coder.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/entropy_encoder/entropy_encoder_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/entropy_encoder.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/entropy_encoder/entropy_encoder_kernel_1.h.html">entropy_encoder_kernel_1</a>:
<br>
This object is implemented using arithmetic coding and is done in the
straight forward way using integers and fixed precision math.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder/entropy_encoder_kernel_2.h.html">entropy_encoder_kernel_2</a>:
<br>
This object is implemented using "range" coding and is done
in the straight forward way using integers and fixed precision math.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_kernel_2</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr></table></div></blockquote></div><a name="entropy_encoder_model"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">entropy_encoder_model</h1><BR><BR>
This object represents some kind of statistical model. You
can use it to write symbols to an entropy_encoder and it will calculate
the cumulative counts/probabilities and manage contexts for you.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/entropy_encoder_model.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_1.h.html">entropy_encoder_model_kernel_1</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_1 that uses conditioning_class_kernel_1a</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1b</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_1 that uses conditioning_class_kernel_2a</td></tr><tr><td valign="top"><div class="tdn">kernel_1b_c</div></td><td width="100%">
is a typedef for kernel_1b that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_1 that uses conditioning_class_kernel_3a</td></tr><tr><td valign="top"><div class="tdn">kernel_1c_c</div></td><td width="100%">
is a typedef for kernel_1c that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_2.h.html">entropy_encoder_model_kernel_2</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-1-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_2 that uses conditioning_class_kernel_1a</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2b</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_2 that uses conditioning_class_kernel_2a</td></tr><tr><td valign="top"><div class="tdn">kernel_2b_c</div></td><td width="100%">
is a typedef for kernel_2b that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2c</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_2 that uses conditioning_class_kernel_3a</td></tr><tr><td valign="top"><div class="tdn">kernel_2c_c</div></td><td width="100%">
is a typedef for kernel_2c that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2d</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_2 that uses conditioning_class_kernel_2a for its order-0
context and conditioning_class_kernel_4b for its order-1 context.</td></tr><tr><td valign="top"><div class="tdn">kernel_2d_c</div></td><td width="100%">
is a typedef for kernel_2d that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_3.h.html">entropy_encoder_model_kernel_3</a>:
<br>
This object is implemented using the <a href="#conditioning_class">conditioning_class</a> component.
It implements an <i>order-2-1-0</i> finite context model and uses lazy exclusions and update exclusions.
The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_3 that uses conditioning_class_kernel_1a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr><tr><td valign="top"><div class="tdn">kernel_3a_c</div></td><td width="100%">
is a typedef for kernel_3a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3b</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_3 that uses conditioning_class_kernel_2a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr><tr><td valign="top"><div class="tdn">kernel_3b_c</div></td><td width="100%">
is a typedef for kernel_3b that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_3c</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_3 that uses conditioning_class_kernel_3a for orders 0 and 1
and conditioning_class_kernel_4b for order-2.</td></tr><tr><td valign="top"><div class="tdn">kernel_3c_c</div></td><td width="100%">
is a typedef for kernel_3c that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_4.h.html">entropy_encoder_model_kernel_4</a>:
<br>
This object is implemented using a variation of the PPM algorithm described by Alistair Moffat in his paper "Implementing
the PPM data compression scheme."
It provides template arguments to select the maximum order and maximum memory to use. For speed,
exclusions are not used. The escape method used is method D.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_4 with the max order set to 4 and the max number
of nodes set to 200,000</td></tr><tr><td valign="top"><div class="tdn">kernel_4a_c</div></td><td width="100%">
is a typedef for kernel_4a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_4b</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_4 with the max order set to 5 and the max number
of nodes set to 1,000,000</td></tr><tr><td valign="top"><div class="tdn">kernel_4b_c</div></td><td width="100%">
is a typedef for kernel_4b that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_5.h.html">entropy_encoder_model_kernel_5</a>:
<br>
This object is implemented using a variation of the PPM algorithm described by Alistair Moffat in his paper "Implementing
the PPM data compression scheme."
It provides template arguments to select the maximum order and maximum memory to use. Exclusions are used. The escape method used is method D.
This implementation is very much like kernel_4 except it is tuned for higher compression rather than speed.
This also uses Dmitry Shkarin's Information Inheritance scheme.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_5a</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_5 with the max order set to 4 and the max number
of nodes set to 200,000</td></tr><tr><td valign="top"><div class="tdn">kernel_5a_c</div></td><td width="100%">
is a typedef for kernel_5a that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_5b</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_5 with the max order set to 5 and the max number
of nodes set to 1,000,000</td></tr><tr><td valign="top"><div class="tdn">kernel_5b_c</div></td><td width="100%">
is a typedef for kernel_5b that checks its preconditions.
</td></tr><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_5c</div></td><td width="100%" bgcolor="#E3E3E3"> is a typedef for entropy_encoder_model_kernel_5 with the max order set to 7 and the max number
of nodes set to 2,500,000</td></tr><tr><td valign="top"><div class="tdn">kernel_5c_c</div></td><td width="100%">
is a typedef for kernel_5c that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/entropy_encoder_model/entropy_encoder_model_kernel_6.h.html">entropy_encoder_model_kernel_6</a>:
<br>
This object just assigns every symbol the same probability. I.e. it uses an <i>order-(-1)</i> model.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_6a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for entropy_encoder_model_kernel_6</td></tr><tr><td valign="top"><div class="tdn">kernel_6a_c</div></td><td width="100%">
is a typedef for kernel_6a that checks its preconditions.
</td></tr></table></div></blockquote></div><a name="lz77_buffer"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">lz77_buffer</h1><BR><BR>
This object represents a pair of buffers (history and lookahead buffers)
used during lz77 style compression.
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/lz77_buffer/lz77_buffer_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/lz77_buffer.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/lz77_buffer/lz77_buffer_kernel_1.h.html">lz77_buffer_kernel_1</a>:
<br>
This object is implemented using the <a href="containers.html#sliding_buffer">sliding_buffer</a> and it
just does simple linear searches of the history buffer to find matches.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for lz77_buffer_kernel_1 that uses sliding_buffer_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/lz77_buffer/lz77_buffer_kernel_2.h.html">lz77_buffer_kernel_2</a>:
<br>
This object is implemented using the <a href="containers.html#sliding_buffer">sliding_buffer</a>. It
finds matches by using a hash table.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for lz77_buffer_kernel_2 that uses sliding_buffer_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr></table></div></blockquote></div><a name="lzp_buffer"></a><div class="component"><a href="#top"><font size="2"><center>[top]</center></font></a><h1 style="margin:0px;">lzp_buffer</h1><BR><BR>
This object represents some variation on the LZP algorithm
described by Charles Bloom in his paper "LZP: a new data
compression algorithm"
<BR><div class="include_file_more_details_wrapper"><a class="more_details" href="dlib/lzp_buffer/lzp_buffer_kernel_abstract.h.html">More Details...</a><div class="include_file">#include &lt;dlib/lzp_buffer.h&gt;</div></div><BR><BR><B>Implementations:</B><blockquote><a href="dlib/lzp_buffer/lzp_buffer_kernel_1.h.html">lzp_buffer_kernel_1</a>:
<br>
This object is implemented using the <a href="containers.html#sliding_buffer">sliding_buffer</a> and uses
an order-3 model to predict matches.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_1a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for lzp_buffer_kernel_1 that uses sliding_buffer_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_1a_c</div></td><td width="100%">
is a typedef for kernel_1a that checks its preconditions.
</td></tr></table></div></blockquote><blockquote><a href="dlib/lzp_buffer/lzp_buffer_kernel_2.h.html">lzp_buffer_kernel_2</a>:
<br>
This object is implemented using the <a href="containers.html#sliding_buffer">sliding_buffer</a> and uses
an order-5-4-3 model to predict matches.
<div class="typedefs"><table CELLSPACING="0" CELLPADDING="0" bgcolor="white"><tr><td bgcolor="#E3E3E3" valign="top"><div class="tdn">kernel_2a</div></td><td width="100%" bgcolor="#E3E3E3">is a typedef for lzp_buffer_kernel_2 that uses sliding_buffer_kernel_1</td></tr><tr><td valign="top"><div class="tdn">kernel_2a_c</div></td><td width="100%">
is a typedef for kernel_2a that checks its preconditions.
</td></tr></table></div></blockquote></div></div></body></html>