Aging_MouthReplace / dlibs /tools /python /src /decision_functions.cpp
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
// Copyright (C) 2013 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "testing_results.h"
#include <dlib/svm.h>
#include <chrono>
using namespace dlib;
using namespace std;
namespace py = pybind11;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
void np_to_cpp (
const numpy_image<double>& x_,
std::vector<matrix<double,0,1>>& samples
)
{
auto x = make_image_view(x_);
DLIB_CASSERT(x.nc() > 0);
DLIB_CASSERT(x.nr() > 0);
samples.resize(x.nr());
for (long r = 0; r < x.nr(); ++r)
{
samples[r].set_size(x.nc());
for (long c = 0; c < x.nc(); ++c)
{
samples[r](c) = x[r][c];
}
}
}
void np_to_cpp (
const numpy_image<double>& x_,
const py::array_t<double>& y,
std::vector<matrix<double,0,1>>& samples,
std::vector<double>& labels
)
{
DLIB_CASSERT(y.ndim() == 1 && y.size() > 0);
labels.assign(y.data(), y.data()+y.size());
auto x = make_image_view(x_);
DLIB_CASSERT(x.nr() == y.size(), "The x matrix must have as many rows as y has elements.");
DLIB_CASSERT(x.nc() > 0);
samples.resize(x.nr());
for (long r = 0; r < x.nr(); ++r)
{
samples[r].set_size(x.nc());
for (long c = 0; c < x.nc(); ++c)
{
samples[r](c) = x[r][c];
}
}
}
template <typename decision_function>
double predict (
const decision_function& df,
const typename decision_function::kernel_type::sample_type& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(samp);
}
inline matrix<double,0,1> np_to_mat(
const py::array_t<double>& samp
)
{
matrix<double,0,1> temp(samp.size());
const auto data = samp.data();
for (long i = 0; i < temp.size(); ++i)
temp(i) = data[i];
return temp;
}
template <typename decision_function>
double normalized_predict (
const normalized_function<decision_function>& df,
const typename decision_function::kernel_type::sample_type& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.function.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.function.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(samp);
}
template <typename decision_function>
std::vector<double> normalized_predict_vec (
const normalized_function<decision_function>& df,
const std::vector<typename decision_function::kernel_type::sample_type>& samps
)
{
std::vector<double> out;
out.reserve(samps.size());
for (const auto& x : samps)
out.push_back(normalized_predict(df,x));
return out;
}
template <typename decision_function>
py::array_t<double> normalized_predict_np_vec (
const normalized_function<decision_function>& df,
const numpy_image<double>& samps_
)
{
auto samps = make_image_view(samps_);
if (df.function.basis_vectors(0).size() != samps.nc())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samps.nc() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
py::array_t<double, py::array::c_style> out((size_t)samps.nr());
matrix<double,0,1> temp(samps.nc());
auto data = out.mutable_data();
for (long r = 0; r < samps.nr(); ++r)
{
for (long c = 0; c < samps.nc(); ++c)
temp(c) = samps[r][c];
*data++ = df(temp);
}
return out;
}
template <typename decision_function>
double normalized_predict_np (
const normalized_function<decision_function>& df,
const py::array_t<double>& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.function.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.function.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(np_to_mat(samp));
}
template <typename kernel_type>
void add_df (
py::module& m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
py::class_<df_type>(m, name.c_str())
.def("__call__", &predict<df_type>)
.def_property_readonly("alpha", [](const df_type& df) {return df.alpha;})
.def_property_readonly("b", [](const df_type& df) {return df.b;})
.def_property_readonly("kernel_function", [](const df_type& df) {return df.kernel_function;})
.def_property_readonly("basis_vectors", [](const df_type& df) {
std::vector<matrix<double,0,1>> temp;
for (long i = 0; i < df.basis_vectors.size(); ++i)
temp.push_back(sparse_to_dense(df.basis_vectors(i)));
return temp;
})
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
template <typename kernel_type>
void add_normalized_df (
py::module& m,
const std::string name
)
{
using df_type = normalized_function<decision_function<kernel_type>>;
py::class_<df_type>(m, name.c_str())
.def("__call__", &normalized_predict<decision_function<kernel_type>>)
.def("__call__", &normalized_predict_np<decision_function<kernel_type>>)
.def("batch_predict", &normalized_predict_vec<decision_function<kernel_type>>)
.def("batch_predict", &normalized_predict_np_vec<decision_function<kernel_type>>)
.def_property_readonly("alpha", [](const df_type& df) {return df.function.alpha;})
.def_property_readonly("b", [](const df_type& df) {return df.function.b;})
.def_property_readonly("kernel_function", [](const df_type& df) {return df.function.kernel_function;})
.def_property_readonly("basis_vectors", [](const df_type& df) {
std::vector<matrix<double,0,1>> temp;
for (long i = 0; i < df.function.basis_vectors.size(); ++i)
temp.push_back(sparse_to_dense(df.function.basis_vectors(i)));
return temp;
})
.def_property_readonly("means", [](const df_type& df) {return df.normalizer.means();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function.")
.def_property_readonly("invstd_devs", [](const df_type& df) {return df.normalizer.std_devs();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function.")
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
template <typename df_type>
typename df_type::sample_type get_weights(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df_type temp = simplify_linear_decision_function(df);
return temp.basis_vectors(0);
}
template <typename df_type>
typename df_type::scalar_type get_bias(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
return df.b;
}
template <typename df_type>
void set_bias(
df_type& df,
double b
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df.b = b;
}
template <typename kernel_type>
void add_linear_df (
py::module &m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
py::class_<df_type>(m, name.c_str())
.def("__call__", predict<df_type>)
.def_property_readonly("weights", &get_weights<df_type>)
.def_property("bias", get_bias<df_type>, set_bias<df_type>)
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
// ----------------------------------------------------------------------------------------
std::string radial_basis_kernel__repr__(const radial_basis_kernel<sample_type>& item)
{
std::ostringstream sout;
sout << "radial_basis_kernel(gamma="<< item.gamma<<")";
return sout.str();
}
std::string linear_kernel__repr__(const linear_kernel<sample_type>& item)
{
std::ostringstream sout;
sout << "linear_kernel()";
return sout.str();
}
// ----------------------------------------------------------------------------------------
std::string binary_test__str__(const binary_test& item)
{
std::ostringstream sout;
sout << "class1_accuracy: "<< item.class1_accuracy << " class2_accuracy: "<< item.class2_accuracy;
return sout.str();
}
std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";}
std::string regression_test__str__(const regression_test& item)
{
std::ostringstream sout;
sout << "mean_squared_error: "<< item.mean_squared_error << " R_squared: "<< item.R_squared;
sout << " mean_average_error: "<< item.mean_average_error << " mean_error_stddev: "<< item.mean_error_stddev;
return sout.str();
}
std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";}
std::string ranking_test__str__(const ranking_test& item)
{
std::ostringstream sout;
sout << "ranking_accuracy: "<< item.ranking_accuracy << " mean_ap: "<< item.mean_ap;
return sout.str();
}
std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";}
// ----------------------------------------------------------------------------------------
template <typename K>
binary_test _normalized_test_binary_decision_function (
const normalized_function<decision_function<K>>& dec_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
template <typename K>
binary_test _normalized_test_binary_decision_function_np (
const normalized_function<decision_function<K>>& dec_funct,
const numpy_image<double>& x_test_,
const py::array_t<double>& y_test_
)
{
std::vector<typename K::sample_type> x_test;
std::vector<double> y_test;
np_to_cpp(x_test_,y_test_, x_test,y_test);
return binary_test(test_binary_decision_function(dec_funct, x_test, y_test));
}
template <typename K>
binary_test _test_binary_decision_function (
const decision_function<K>& dec_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
template <typename K>
regression_test _test_regression_function (
const decision_function<K>& reg_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); }
template < typename K >
ranking_test _test_ranking_function1 (
const decision_function<K>& funct,
const std::vector<ranking_pair<typename K::sample_type> >& samples
) { return ranking_test(test_ranking_function(funct, samples)); }
template < typename K >
ranking_test _test_ranking_function2 (
const decision_function<K>& funct,
const ranking_pair<typename K::sample_type>& sample
) { return ranking_test(test_ranking_function(funct, sample)); }
// ----------------------------------------------------------------------------------------
void setup_auto_train_rbf_classifier (py::module& m)
{
m.def("auto_train_rbf_classifier", [](
const std::vector<matrix<double,0,1>>& x,
const std::vector<double>& y,
double max_runtime_seconds,
bool be_verbose
) { return auto_train_rbf_classifier(x,y,std::chrono::microseconds((uint64_t)(max_runtime_seconds*1e6)),be_verbose); },
py::arg("x"), py::arg("y"), py::arg("max_runtime_seconds"), py::arg("be_verbose")=true,
"requires \n\
- y contains at least 6 examples of each class. Moreover, every element in y \n\
is either +1 or -1. \n\
- max_runtime_seconds >= 0 \n\
- len(x) == len(y) \n\
- all the vectors in x have the same dimension. \n\
ensures \n\
- This routine trains a radial basis function SVM on the given binary \n\
classification training data. It uses the svm_c_trainer to do this. It also \n\
uses find_max_global() and 6-fold cross-validation to automatically determine \n\
the best settings of the SVM's hyper parameters. \n\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the \n\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as \n\
often as possible. \n\
- The hyperparameter search will run for about max_runtime and will print \n\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x) == len(y)
- all the vectors in x have the same dimension.
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m.def("auto_train_rbf_classifier", [](
const numpy_image<double>& x_,
const py::array_t<double>& y_,
double max_runtime_seconds,
bool be_verbose
) {
std::vector<matrix<double,0,1>> x;
std::vector<double> y;
np_to_cpp(x_,y_, x, y);
return auto_train_rbf_classifier(x,y,std::chrono::microseconds((uint64_t)(max_runtime_seconds*1e6)),be_verbose); },
py::arg("x"), py::arg("y"), py::arg("max_runtime_seconds"), py::arg("be_verbose")=true,
"requires \n\
- y contains at least 6 examples of each class. Moreover, every element in y \n\
is either +1 or -1. \n\
- max_runtime_seconds >= 0 \n\
- len(x.shape(0)) == len(y) \n\
- x.shape(1) > 0 \n\
ensures \n\
- This routine trains a radial basis function SVM on the given binary \n\
classification training data. It uses the svm_c_trainer to do this. It also \n\
uses find_max_global() and 6-fold cross-validation to automatically determine \n\
the best settings of the SVM's hyper parameters. \n\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the \n\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as \n\
often as possible. \n\
- The hyperparameter search will run for about max_runtime and will print \n\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x.shape(0)) == len(y)
- x.shape(1) > 0
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m.def("reduce", [](const normalized_function<decision_function<radial_basis_kernel<matrix<double,0,1>>>>& df,
const std::vector<matrix<double,0,1>>& x,
long num_bv,
double eps)
{
auto out = df;
// null_trainer doesn't use y so we can leave it empty.
std::vector<double> y;
out.function = reduced2(null_trainer(df.function),num_bv,eps).train(x,y);
return out;
}, py::arg("df"), py::arg("x"), py::arg("num_basis_vectors"), py::arg("eps")=1e-3
);
m.def("reduce", [](const normalized_function<decision_function<radial_basis_kernel<matrix<double,0,1>>>>& df,
const numpy_image<double>& x_,
long num_bv,
double eps)
{
std::vector<matrix<double,0,1>> x;
np_to_cpp(x_, x);
// null_trainer doesn't use y so we can leave it empty.
std::vector<double> y;
auto out = df;
out.function = reduced2(null_trainer(df.function),num_bv,eps).train(x,y);
return out;
}, py::arg("df"), py::arg("x"), py::arg("num_basis_vectors"), py::arg("eps")=1e-3,
"requires \n\
- eps > 0 \n\
- num_bv > 0 \n\
ensures \n\
- This routine takes a learned radial basis function and tries to find a \n\
new RBF function with num_basis_vectors basis vectors that approximates \n\
the given df() as closely as possible. In particular, it finds a \n\
function new_df() such that new_df(x[i])==df(x[i]) as often as possible. \n\
- This is accomplished using a reduced set method that begins by using a \n\
projection, in kernel space, onto a random set of num_basis_vectors \n\
vectors in x. Then, L-BFGS is used to further optimize new_df() to match \n\
df(). The eps parameter controls how long L-BFGS will run, smaller \n\
values of eps possibly giving better solutions but taking longer to \n\
execute."
/*!
requires
- eps > 0
- num_bv > 0
ensures
- This routine takes a learned radial basis function and tries to find a
new RBF function with num_basis_vectors basis vectors that approximates
the given df() as closely as possible. In particular, it finds a
function new_df() such that new_df(x[i])==df(x[i]) as often as possible.
- This is accomplished using a reduced set method that begins by using a
projection, in kernel space, onto a random set of num_basis_vectors
vectors in x. Then, L-BFGS is used to further optimize new_df() to match
df(). The eps parameter controls how long L-BFGS will run, smaller
values of eps possibly giving better solutions but taking longer to
execute.
!*/
);
}
// ----------------------------------------------------------------------------------------
void bind_decision_functions(py::module &m)
{
add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear");
add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear");
add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection");
add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection");
add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial");
add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial");
py::class_<radial_basis_kernel<sample_type>>(m, "_radial_basis_kernel")
.def("__repr__", radial_basis_kernel__repr__)
.def_property_readonly("gamma", [](const radial_basis_kernel<sample_type>& k){return k.gamma; });
py::class_<linear_kernel<sample_type>>(m, "_linear_kernel")
.def("__repr__", linear_kernel__repr__);
add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis");
add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis");
add_normalized_df<radial_basis_kernel<sample_type>>(m, "_normalized_decision_function_radial_basis");
setup_auto_train_rbf_classifier(m);
add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid");
add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid");
m.def("test_binary_decision_function", _normalized_test_binary_decision_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _normalized_test_binary_decision_function_np<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
py::arg("function"), py::arg("sample"));
m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("sample"));
py::class_<binary_test>(m, "_binary_test")
.def("__str__", binary_test__str__)
.def("__repr__", binary_test__repr__)
.def_readwrite("class1_accuracy", &binary_test::class1_accuracy,
"A value between 0 and 1, measures accuracy on the +1 class.")
.def_readwrite("class2_accuracy", &binary_test::class2_accuracy,
"A value between 0 and 1, measures accuracy on the -1 class.");
py::class_<ranking_test>(m, "_ranking_test")
.def("__str__", ranking_test__str__)
.def("__repr__", ranking_test__repr__)
.def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy,
"A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
.def_readwrite("mean_ap", &ranking_test::mean_ap,
"A value between 0 and 1, measures the mean average precision of the ranking.");
py::class_<regression_test>(m, "_regression_test")
.def("__str__", regression_test__str__)
.def("__repr__", regression_test__repr__)
.def_readwrite("mean_average_error", &regression_test::mean_average_error,
"The mean average error of a regression function on a dataset.")
.def_readwrite("mean_error_stddev", &regression_test::mean_error_stddev,
"The standard deviation of the absolute value of the error of a regression function on a dataset.")
.def_readwrite("mean_squared_error", &regression_test::mean_squared_error,
"The mean squared error of a regression function on a dataset.")
.def_readwrite("R_squared", &regression_test::R_squared,
"A value between 0 and 1, measures the squared correlation between the output of a \n"
"regression function and the target values.");
}