AshanGimhana
commited on
Commit
•
13a83ac
1
Parent(s):
07fffb8
Update app.py
Browse files
app.py
CHANGED
@@ -36,18 +36,33 @@ from models.psp import pSp
|
|
36 |
# Huggingface login
|
37 |
login(token=os.getenv("TOKENKEY"))
|
38 |
|
|
|
|
|
|
|
39 |
# If 'mse' is a custom function needed,
|
40 |
#custom_objects = {'mse': MeanSquaredError()}
|
41 |
#new_age_model = load_model("age_prediction_model.h5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Download models from Huggingface
|
44 |
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
|
45 |
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
|
46 |
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
|
47 |
|
|
|
|
|
48 |
|
49 |
# Age prediction model setup
|
50 |
-
age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
|
|
|
|
|
51 |
|
52 |
# Face detection and landmarks predictor setup
|
53 |
detector = dlib.get_frontal_face_detector()
|
@@ -116,16 +131,37 @@ def get_mouth_region(image):
|
|
116 |
|
117 |
# Function to predict age
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def predict_age(image):
|
120 |
-
|
121 |
-
|
122 |
-
image = image
|
123 |
-
image =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
# Predict age
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
# Function for color correction
|
131 |
def color_correct(source, target):
|
|
|
36 |
# Huggingface login
|
37 |
login(token=os.getenv("TOKENKEY"))
|
38 |
|
39 |
+
########################################################################
|
40 |
+
############## tensorflow model for age calculation #######################
|
41 |
+
|
42 |
# If 'mse' is a custom function needed,
|
43 |
#custom_objects = {'mse': MeanSquaredError()}
|
44 |
#new_age_model = load_model("age_prediction_model.h5")
|
45 |
+
########################################################################
|
46 |
+
|
47 |
+
|
48 |
+
########################################################################
|
49 |
+
############## pytorch model for age calculation #######################
|
50 |
+
age_calc_model = torch.load('Custom_Age_prediction_model.pth')
|
51 |
+
|
52 |
+
########################################################################
|
53 |
|
54 |
# Download models from Huggingface
|
55 |
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
|
56 |
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
|
57 |
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
|
58 |
|
59 |
+
########################################################################
|
60 |
+
############## caffe model for age calculation #######################
|
61 |
|
62 |
# Age prediction model setup
|
63 |
+
#age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
|
64 |
+
########################################################################
|
65 |
+
|
66 |
|
67 |
# Face detection and landmarks predictor setup
|
68 |
detector = dlib.get_frontal_face_detector()
|
|
|
131 |
|
132 |
# Function to predict age
|
133 |
|
134 |
+
# old tensorflow function for age predict
|
135 |
+
|
136 |
+
#def predict_age(image):
|
137 |
+
#image = np.array(image.resize((64, 64)))
|
138 |
+
#image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
139 |
+
#image = image / 255.0
|
140 |
+
#image = np.expand_dims(image, axis=0)
|
141 |
+
|
142 |
+
##### Predict age
|
143 |
+
#val = new_age_model.predict(np.array(image))
|
144 |
+
#age = val[0][0]
|
145 |
+
#return int(age)
|
146 |
+
|
147 |
def predict_age(image):
|
148 |
+
age_calc_model.eval()
|
149 |
+
# Load and preprocess the image
|
150 |
+
image = cv2.imread(image, cv2.IMREAD_GRAYSCALE) # Load as grayscale
|
151 |
+
image = cv2.resize(image, (64, 64)) # Resize to 64x64
|
152 |
+
image = image / 255.0 # Normalize pixel values to [0, 1]
|
153 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
154 |
+
image = np.expand_dims(image, axis=0) # Add channel dimension
|
155 |
+
image = torch.tensor(image, dtype=torch.float32).to(device)
|
156 |
+
|
157 |
+
# Convert to tensor
|
158 |
+
image_tensor = torch.tensor(image, dtype=torch.float32)
|
159 |
|
160 |
# Predict age
|
161 |
+
with torch.no_grad():
|
162 |
+
predicted_age = age_calc_model(image_tensor)
|
163 |
+
|
164 |
+
return int(predicted_age.item())
|
165 |
|
166 |
# Function for color correction
|
167 |
def color_correct(source, target):
|