AshanGimhana
commited on
Commit
•
19a2d28
1
Parent(s):
1e56be4
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,19 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
|
4 |
-
# Install Gradio
|
5 |
os.system("pip install gradio==3.50")
|
6 |
|
7 |
-
# Create and run setup script for CUDA environment variables
|
8 |
-
with open('setup.sh', 'w') as f:
|
9 |
-
f.write('''#!/bin/bash
|
10 |
-
export CUDA_HOME=/usr/local/cuda
|
11 |
-
export PATH=$CUDA_HOME/bin:$PATH
|
12 |
-
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
|
13 |
-
''')
|
14 |
-
|
15 |
-
# Make the script executable
|
16 |
-
os.system('chmod +x setup.sh')
|
17 |
-
|
18 |
-
# Run the setup script to set environment variables
|
19 |
-
os.system('./setup.sh')
|
20 |
-
|
21 |
-
import torch
|
22 |
-
|
23 |
-
# Check CUDA availability
|
24 |
-
is_cuda_available = torch.cuda.is_available()
|
25 |
-
device = 'cuda' if is_cuda_available else 'cpu'
|
26 |
-
print("CUDA available:", is_cuda_available)
|
27 |
|
28 |
from argparse import Namespace
|
29 |
import pprint
|
30 |
import numpy as np
|
31 |
from PIL import Image
|
|
|
32 |
import torchvision.transforms as transforms
|
33 |
import cv2
|
34 |
import dlibs.dlib
|
35 |
import matplotlib.pyplot as plt
|
36 |
-
import gradio as gr
|
37 |
from tensorflow.keras.preprocessing.image import img_to_array
|
38 |
from huggingface_hub import hf_hub_download, login
|
39 |
from datasets.augmentations import AgeTransformer
|
@@ -69,14 +49,14 @@ EXPERIMENT_DATA_ARGS = {
|
|
69 |
}
|
70 |
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
|
71 |
model_path = EXPERIMENT_ARGS['model_path']
|
72 |
-
ckpt = torch.load(model_path, map_location=
|
73 |
opts = ckpt['opts']
|
74 |
pprint.pprint(opts)
|
75 |
opts['checkpoint_path'] = model_path
|
76 |
opts = Namespace(**opts)
|
77 |
net = pSp(opts)
|
78 |
net.eval()
|
79 |
-
net.
|
80 |
|
81 |
print('Model successfully loaded!')
|
82 |
|
@@ -151,9 +131,9 @@ def apply_aging(image, target_age):
|
|
151 |
results = []
|
152 |
for age_transformer in age_transformers:
|
153 |
with torch.no_grad():
|
154 |
-
input_image_age = [age_transformer(input_image.cpu()).to(
|
155 |
input_image_age = torch.stack(input_image_age)
|
156 |
-
result_tensor = net(input_image_age.to(
|
157 |
result_image = tensor2im(result_tensor)
|
158 |
results.append(np.array(result_image))
|
159 |
final_result = results[0]
|
@@ -186,13 +166,10 @@ def process_image(uploaded_image):
|
|
186 |
|
187 |
iface = gr.Interface(
|
188 |
fn=process_image,
|
189 |
-
inputs=gr.Image(type="pil"
|
190 |
-
outputs=[
|
191 |
-
|
192 |
-
|
193 |
-
],
|
194 |
-
title="Age Transformation and Teeth Replacement",
|
195 |
-
description="Upload an image and apply aging effects while replacing teeth."
|
196 |
)
|
197 |
|
198 |
-
iface.launch(
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
|
|
|
4 |
os.system("pip install gradio==3.50")
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from argparse import Namespace
|
8 |
import pprint
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
+
import torch
|
12 |
import torchvision.transforms as transforms
|
13 |
import cv2
|
14 |
import dlibs.dlib
|
15 |
import matplotlib.pyplot as plt
|
16 |
+
import gradio as gr # Importing Gradio as gr
|
17 |
from tensorflow.keras.preprocessing.image import img_to_array
|
18 |
from huggingface_hub import hf_hub_download, login
|
19 |
from datasets.augmentations import AgeTransformer
|
|
|
49 |
}
|
50 |
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
|
51 |
model_path = EXPERIMENT_ARGS['model_path']
|
52 |
+
ckpt = torch.load(model_path, map_location='cpu')
|
53 |
opts = ckpt['opts']
|
54 |
pprint.pprint(opts)
|
55 |
opts['checkpoint_path'] = model_path
|
56 |
opts = Namespace(**opts)
|
57 |
net = pSp(opts)
|
58 |
net.eval()
|
59 |
+
net.cuda()
|
60 |
|
61 |
print('Model successfully loaded!')
|
62 |
|
|
|
131 |
results = []
|
132 |
for age_transformer in age_transformers:
|
133 |
with torch.no_grad():
|
134 |
+
input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
|
135 |
input_image_age = torch.stack(input_image_age)
|
136 |
+
result_tensor = net(input_image_age.to("cuda").float(), randomize_noise=False, resize=False)[0]
|
137 |
result_image = tensor2im(result_tensor)
|
138 |
results.append(np.array(result_image))
|
139 |
final_result = results[0]
|
|
|
166 |
|
167 |
iface = gr.Interface(
|
168 |
fn=process_image,
|
169 |
+
inputs=gr.Image(type="pil"),
|
170 |
+
outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
171 |
+
title="Aging Effect with Teeth Replacement",
|
172 |
+
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
|
|
|
|
|
|
|
173 |
)
|
174 |
|
175 |
+
iface.launch(debug=True)
|