AshanGimhana commited on
Commit
646ccb4
1 Parent(s): 02f81b2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +197 -0
app.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+
4
+ os.system("pip install gradio==3.50")
5
+ os.system("pip install dlib==19.24.2")
6
+
7
+ #############################################
8
+
9
+ import torch
10
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
11
+ # True
12
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
13
+
14
+ ###################################################
15
+
16
+
17
+ from argparse import Namespace
18
+ import pprint
19
+ import numpy as np
20
+ from PIL import Image
21
+ import torch
22
+ import torchvision.transforms as transforms
23
+ import cv2
24
+ import dlib
25
+ import matplotlib.pyplot as plt
26
+ import gradio as gr # Importing Gradio as gr
27
+ from tensorflow.keras.preprocessing.image import img_to_array
28
+ from huggingface_hub import hf_hub_download, login
29
+ from datasets.augmentations import AgeTransformer
30
+ from utils.common import tensor2im
31
+ from models.psp import pSp
32
+
33
+ # Huggingface login
34
+ login(token=os.getenv("TOKENKEY"))
35
+
36
+ # Download models from Huggingface
37
+ age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
38
+ caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
39
+ sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
40
+
41
+ # Age prediction model setup
42
+ age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
43
+
44
+ # Face detection and landmarks predictor setup
45
+ detector = dlib.get_frontal_face_detector()
46
+ predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
47
+
48
+ # Load the pretrained aging model
49
+ EXPERIMENT_TYPE = 'ffhq_aging'
50
+ EXPERIMENT_DATA_ARGS = {
51
+ "ffhq_aging": {
52
+ "model_path": sam_ffhq_aging,
53
+ "transform": transforms.Compose([
54
+ transforms.Resize((256, 256)),
55
+ transforms.ToTensor(),
56
+ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
57
+ ])
58
+ }
59
+ }
60
+ EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
61
+ model_path = EXPERIMENT_ARGS['model_path']
62
+ ckpt = torch.load(model_path, map_location='cpu')
63
+ opts = ckpt['opts']
64
+ pprint.pprint(opts)
65
+ opts['checkpoint_path'] = model_path
66
+ opts = Namespace(**opts)
67
+ net = pSp(opts)
68
+ net.eval()
69
+ net.cuda()
70
+
71
+ print('Model successfully loaded!')
72
+
73
+
74
+ # Functions for face and mouth region
75
+ def get_face_region(image):
76
+ gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
77
+ faces = detector(gray)
78
+ if len(faces) > 0:
79
+ return faces[0]
80
+ return None
81
+
82
+ def get_mouth_region(image):
83
+ gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
84
+ faces = detector(gray)
85
+ for face in faces:
86
+ landmarks = predictor(gray, face)
87
+ mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
88
+ return np.array(mouth_points, np.int32)
89
+ return None
90
+
91
+ # Function to predict age
92
+ def predict_age(image):
93
+ image = np.array(image)
94
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
95
+ blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(224, 224), mean=(104.0, 177.0, 123.0), swapRB=False)
96
+ age_net.setInput(blob)
97
+ predictions = age_net.forward()
98
+ predicted_age = np.dot(predictions[0], np.arange(0, 101)).flatten()[0]
99
+ return int(predicted_age)
100
+
101
+ # Function for color correction
102
+ def color_correct(source, target):
103
+ mean_src = np.mean(source, axis=(0, 1))
104
+ std_src = np.std(source, axis=(0, 1))
105
+ mean_tgt = np.mean(target, axis=(0, 1))
106
+ std_tgt = np.std(target, axis=(0, 1))
107
+ src_normalized = (source - mean_src) / std_src
108
+ src_corrected = (src_normalized * std_tgt) + mean_tgt
109
+ return np.clip(src_corrected, 0, 255).astype(np.uint8)
110
+
111
+ # Function to replace teeth
112
+ def replace_teeth(temp_image, aged_image):
113
+ temp_image = np.array(temp_image)
114
+ aged_image = np.array(aged_image)
115
+ temp_mouth = get_mouth_region(temp_image)
116
+ aged_mouth = get_mouth_region(aged_image)
117
+ if temp_mouth is None or aged_mouth is None:
118
+ return aged_image
119
+ temp_mask = np.zeros_like(temp_image)
120
+ cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
121
+ temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
122
+ temp_mouth_bbox = cv2.boundingRect(temp_mouth)
123
+ aged_mouth_bbox = cv2.boundingRect(aged_mouth)
124
+ temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
125
+ temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
126
+ temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
127
+ temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
128
+ aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
129
+ temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
130
+ center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
131
+ seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
132
+ return seamless_teeth
133
+
134
+ # Function to run alignment
135
+ def run_alignment(image):
136
+ from scripts.align_all_parallel import align_face
137
+ temp_image_path = "/tmp/temp_image.jpg"
138
+ image.save(temp_image_path)
139
+ aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
140
+ return aligned_image
141
+
142
+ # Function to apply aging
143
+ def apply_aging(image, target_age):
144
+ img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
145
+ input_image = img_transforms(image)
146
+ age_transformers = [AgeTransformer(target_age=target_age)]
147
+ results = []
148
+ for age_transformer in age_transformers:
149
+ with torch.no_grad():
150
+ input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
151
+ input_image_age = torch.stack(input_image_age)
152
+ result_tensor = net(input_image_age.float(), randomize_noise=False, resize=False)[0]
153
+ result_image = tensor2im(result_tensor)
154
+ results.append(np.array(result_image))
155
+ final_result = results[0]
156
+ return final_result
157
+
158
+ # Function to process the image
159
+ def process_image(uploaded_image):
160
+ # Loading images for good and bad teeth
161
+ temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 4)]
162
+ temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 7)]
163
+
164
+ # Predicting the age
165
+ predicted_age = predict_age(uploaded_image)
166
+ target_age = predicted_age + 5
167
+
168
+ # Aligning the face in the uploaded image
169
+ aligned_image = run_alignment(uploaded_image)
170
+
171
+ # Applying aging effect
172
+ aged_image = apply_aging(aligned_image, target_age=target_age)
173
+
174
+ # Randomly selecting teeth images
175
+ good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
176
+ bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]
177
+
178
+ # Replacing teeth in aged image
179
+ aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
180
+ aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)
181
+
182
+ return aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age
183
+
184
+ # Gradio Interface
185
+ def show_results(uploaded_image):
186
+ aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age = process_image(uploaded_image)
187
+ return aged_image_good_teeth, aged_image_bad_teeth, f"Predicted Age: {predicted_age}, Target Age: {target_age}"
188
+
189
+ iface = gr.Interface(
190
+ fn=show_results,
191
+ inputs=gr.Image(type="pil"),
192
+ outputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Textbox()],
193
+ title="Aging Effect with Teeth Replacement",
194
+ description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
195
+ )
196
+
197
+ iface.launch()