AshanGimhana commited on
Commit
ff4d438
1 Parent(s): 47ef636

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -24
app.py CHANGED
@@ -13,6 +13,21 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
13
 
14
  ###################################################
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  from argparse import Namespace
18
  import pprint
@@ -41,13 +56,14 @@ login(token=os.getenv("TOKENKEY"))
41
 
42
  # If 'mse' is a custom function needed,
43
  #custom_objects = {'mse': MeanSquaredError()}
44
- #new_age_model = load_model("age_prediction_model.h5")
45
  ########################################################################
46
 
47
 
48
  ########################################################################
49
  ############## pytorch model for age calculation #######################
50
- age_calc_model = torch.load('Custom_Age_prediction_model.pth')
 
51
 
52
  ########################################################################
53
 
@@ -140,35 +156,35 @@ def get_mouth_region(image):
140
 
141
  # old tensorflow function for age predict
142
 
143
- #def predict_age(image):
144
- #image = np.array(image.resize((64, 64)))
145
- #image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
146
- #image = image / 255.0
147
- #image = np.expand_dims(image, axis=0)
148
 
149
  ##### Predict age
150
- #val = new_age_model.predict(np.array(image))
151
- #age = val[0][0]
152
- #return int(age)
153
 
154
- def predict_age(image):
155
- age_calc_model.eval()
156
- # Load and preprocess the image
157
- image = cv2.imread(image, cv2.IMREAD_GRAYSCALE) # Load as grayscale
158
- image = cv2.resize(image, (64, 64)) # Resize to 64x64
159
- image = image / 255.0 # Normalize pixel values to [0, 1]
160
- image = np.expand_dims(image, axis=0) # Add batch dimension
161
- image = np.expand_dims(image, axis=0) # Add channel dimension
162
- image = torch.tensor(image, dtype=torch.float32).to(device)
163
 
164
  # Convert to tensor
165
- image_tensor = torch.tensor(image, dtype=torch.float32)
166
 
167
- # Predict age
168
- with torch.no_grad():
169
- predicted_age = age_calc_model(image_tensor)
170
 
171
- return int(predicted_age.item())
172
 
173
  # Function for color correction
174
  def color_correct(source, target):
 
13
 
14
  ###################################################
15
 
16
+ gpus = tf.config.list_physical_devices('GPU')
17
+ print("Available GPUs TF:", gpus)
18
+
19
+ if gpus:
20
+ try:
21
+ # Allow TensorFlow to allocate memory as needed
22
+ for gpu in gpus:
23
+ tf.config.experimental.set_memory_growth(gpu, True)
24
+ except RuntimeError as e:
25
+ print(e) # Print error if unable to set up GPU
26
+ else:
27
+ print("No GPUs available.")
28
+
29
+ ###################################################
30
+
31
 
32
  from argparse import Namespace
33
  import pprint
 
56
 
57
  # If 'mse' is a custom function needed,
58
  #custom_objects = {'mse': MeanSquaredError()}
59
+ new_age_model = load_model("age_prediction_model.h5")
60
  ########################################################################
61
 
62
 
63
  ########################################################################
64
  ############## pytorch model for age calculation #######################
65
+
66
+ #age_calc_model = torch.load('Custom_Age_prediction_model.pth')
67
 
68
  ########################################################################
69
 
 
156
 
157
  # old tensorflow function for age predict
158
 
159
+ def predict_age(image):
160
+ image = np.array(image.resize((64, 64)))
161
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
162
+ image = image / 255.0
163
+ image = np.expand_dims(image, axis=0)
164
 
165
  ##### Predict age
166
+ val = new_age_model.predict(np.array(image))
167
+ age = val[0][0]
168
+ return int(age)
169
 
170
+ #def predict_age(image):
171
+ #age_calc_model.eval()
172
+ ##### Load and preprocess the image
173
+ #image = cv2.imread(image, cv2.IMREAD_GRAYSCALE) # Load as grayscale
174
+ #image = cv2.resize(image, (64, 64)) # Resize to 64x64
175
+ #image = image / 255.0 # Normalize pixel values to [0, 1]
176
+ #image = np.expand_dims(image, axis=0) # Add batch dimension
177
+ #image = np.expand_dims(image, axis=0) # Add channel dimension
178
+ #image = torch.tensor(image, dtype=torch.float32).to(device)
179
 
180
  # Convert to tensor
181
+ #image_tensor = torch.tensor(image, dtype=torch.float32)
182
 
183
+ #### Predict age
184
+ #with torch.no_grad():
185
+ #predicted_age = age_calc_model(image_tensor)
186
 
187
+ #return int(predicted_age.item())
188
 
189
  # Function for color correction
190
  def color_correct(source, target):