import os import subprocess os.system("pip install gradio==3.50") os.system("pip install dlib==19.24.2") ############################################# def install_cuda_toolkit(): # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) os.environ["CUDA_HOME"] = "/usr/local/cuda" os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( os.environ["CUDA_HOME"], "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], ) # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" install_cuda_toolkit() ################################################### from argparse import Namespace import pprint import numpy as np from PIL import Image import torch import torchvision.transforms as transforms import cv2 import dlib import matplotlib.pyplot as plt import gradio as gr # Importing Gradio as gr from tensorflow.keras.preprocessing.image import img_to_array from huggingface_hub import hf_hub_download, login from datasets.augmentations import AgeTransformer from utils.common import tensor2im from models.psp import pSp # Huggingface login login(token=os.getenv("TOKENKEY")) # Download models from Huggingface age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt") caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel") sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt") # Age prediction model setup age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model) # Face detection and landmarks predictor setup detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # Load the pretrained aging model EXPERIMENT_TYPE = 'ffhq_aging' EXPERIMENT_DATA_ARGS = { "ffhq_aging": { "model_path": sam_ffhq_aging, "transform": transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) } } EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE] model_path = EXPERIMENT_ARGS['model_path'] ckpt = torch.load(model_path, map_location='cpu') opts = ckpt['opts'] pprint.pprint(opts) opts['checkpoint_path'] = model_path opts = Namespace(**opts) net = pSp(opts) net.eval() net.cuda() print('Model successfully loaded!') def get_face_region(image): gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) faces = detector(gray) if len(faces) > 0: return faces[0] return None def get_mouth_region(image): gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) faces = detector(gray) for face in faces: landmarks = predictor(gray, face) mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)] return np.array(mouth_points, np.int32) return None def predict_age(image): image = np.array(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(224, 224), mean=(104.0, 177.0, 123.0), swapRB=False) age_net.setInput(blob) predictions = age_net.forward() predicted_age = np.dot(predictions[0], np.arange(0, 101)).flatten()[0] return int(predicted_age) def color_correct(source, target): mean_src = np.mean(source, axis=(0, 1)) std_src = np.std(source, axis=(0, 1)) mean_tgt = np.mean(target, axis=(0, 1)) std_tgt = np.std(target, axis=(0, 1)) src_normalized = (source - mean_src) / std_src src_corrected = (src_normalized * std_tgt) + mean_tgt return np.clip(src_corrected, 0, 255).astype(np.uint8) def replace_teeth(temp_image, aged_image): temp_image = np.array(temp_image) aged_image = np.array(aged_image) temp_mouth = get_mouth_region(temp_image) aged_mouth = get_mouth_region(aged_image) if temp_mouth is None or aged_mouth is None: return aged_image temp_mask = np.zeros_like(temp_image) cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255)) temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask) temp_mouth_bbox = cv2.boundingRect(temp_mouth) aged_mouth_bbox = cv2.boundingRect(aged_mouth) temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]] temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]] temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3])) temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3])) aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]] temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop) center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2) seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE) return seamless_teeth def run_alignment(image): from scripts.align_all_parallel import align_face temp_image_path = "/tmp/temp_image.jpg" image.save(temp_image_path) aligned_image = align_face(filepath=temp_image_path, predictor=predictor) return aligned_image def apply_aging(image, target_age): img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform'] input_image = img_transforms(image) age_transformers = [AgeTransformer(target_age=target_age)] results = [] for age_transformer in age_transformers: with torch.no_grad(): input_image_age = [age_transformer(input_image.cpu()).to('cuda')] input_image_age = torch.stack(input_image_age) result_tensor = net(input_image_age.to("cuda").float(), randomize_noise=False, resize=False)[0] result_image = tensor2im(result_tensor) results.append(np.array(result_image)) final_result = results[0] return final_result def process_image(uploaded_image): # Loading images for good and bad teeth temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 5)] temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)] # Predicting the age predicted_age = predict_age(uploaded_image) target_age = predicted_age + 5 # Aligning the face in the uploaded image aligned_image = run_alignment(uploaded_image) # Applying aging effect aged_image = apply_aging(aligned_image, target_age=target_age) # Randomly selecting teeth images using index instead of np.random.choice good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))] bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))] # Replacing teeth in aged image aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image) aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image) return aged_image_good_teeth, aged_image_bad_teeth iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=[gr.Image(type="pil"), gr.Image(type="pil")], title="Aging Effect with Teeth Replacement", description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth." ) iface.launch()