// Copyright (C) 2016 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_DNn_UTILITIES_ABSTRACT_H_ #ifdef DLIB_DNn_UTILITIES_ABSTRACT_H_ #include "core_abstract.h" #include "../geometry/vector_abstract.h" namespace dlib { // ---------------------------------------------------------------------------------------- double log1pexp( double x ); /*! ensures - returns log(1+exp(x)) (except computes it using a numerically accurate method) NOTE: For technical reasons, it is defined in misc.h. !*/ // ---------------------------------------------------------------------------------------- void randomize_parameters ( tensor& params, unsigned long num_inputs_and_outputs, dlib::rand& rnd ); /*! ensures - This function assigns random values into params based on the given random number generator. In particular, it uses the parameter initialization method of formula 16 from the paper "Understanding the difficulty of training deep feedforward neural networks" by Xavier Glorot and Yoshua Bengio. - It is assumed that the total number of inputs and outputs from the layer is num_inputs_and_outputs. That is, you should set num_inputs_and_outputs to the sum of the dimensionalities of the vectors going into and out of the layer that uses params as its parameters. !*/ // ---------------------------------------------------------------------------------------- template void net_to_xml ( const net_type& net, std::ostream& out ); /*! requires - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or add_tag_layer. - All layers in the net must provide to_xml() functions. ensures - Prints the given neural network object as an XML document to the given output stream. !*/ template void net_to_xml ( const net_type& net, const std::string& filename ); /*! requires - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or add_tag_layer. - All layers in the net must provide to_xml() functions. ensures - This function is just like the above net_to_xml(), except it writes to a file rather than an ostream. !*/ // ---------------------------------------------------------------------------------------- template dpoint input_tensor_to_output_tensor( const net_type& net, dpoint p ); /*! requires - net_type is an object of type add_layer, add_skip_layer, or add_tag_layer. - All layers in the net must provide map_input_to_output() functions. ensures - Given a dpoint (i.e. a row,column coordinate) in the input tensor given to net, this function returns the corresponding dpoint in the output tensor net.get_output(). This kind of mapping is useful when working with fully convolutional networks as you will often want to know what parts of the output feature maps correspond to what parts of the input. - If the network contains skip layers then any layers skipped over by the skip layer are ignored for the purpose of computing this coordinate mapping. That is, if you walk the network from the output layer to the input layer, where each time you encounter a skip layer you jump to the layer indicated by the skip layer, you will visit exactly the layers in the network involved in the input_tensor_to_output_tensor() calculation. This behavior is useful since it allows you to compute some auxiliary DNN as a separate branch of computation that is separate from the main network's job of running some kind of fully convolutional network over an image. For instance, you might want to have a branch in your network that computes some global image level summarization/feature. !*/ // ---------------------------------------------------------------------------------------- template dpoint output_tensor_to_input_tensor( const net_type& net, dpoint p ); /*! requires - net_type is an object of type add_layer, add_skip_layer, or add_tag_layer. - All layers in the net must provide map_output_to_input() functions. ensures - This function provides the reverse mapping of input_tensor_to_output_tensor(). That is, given a dpoint in net.get_output(), what is the corresponding dpoint in the input tensor? !*/ // ---------------------------------------------------------------------------------------- template inline size_t count_parameters( const net_type& net ); /*! requires - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or add_tag_layer. ensures - Returns the number of allocated parameters in the network. E.g. if the network has not been trained then, since nothing has been allocated yet, it will return 0. !*/ // ---------------------------------------------------------------------------------------- template void set_all_learning_rate_multipliers( net_type& net, double learning_rate_multiplier ); /*! requires - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or add_tag_layer. - learning_rate_multiplier >= 0 ensures - Sets all learning_rate_multipliers and bias_learning_rate_multipliers in net to learning_rate_multiplier. !*/ // ---------------------------------------------------------------------------------------- template void set_learning_rate_multipliers_range( net_type& net, double learning_rate_multiplier ); /*! requires - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or add_tag_layer. - learning_rate_multiplier >= 0 - begin <= end <= net_type::num_layers ensures - Loops over the layers in the range [begin,end) in net and calls set_learning_rate_multiplier on them with the value of learning_rate_multiplier. !*/ // ---------------------------------------------------------------------------------------- } #endif // DLIB_DNn_UTILITIES_ABSTRACT_H_