// Copyright (C) 2007 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_GRAPH_UTILs_ABSTRACT_ #ifdef DLIB_GRAPH_UTILs_ABSTRACT_ #include "../directed_graph.h" #include "../algs.h" namespace dlib { // ---------------------------------------------------------------------------------------- template < typename T > typename T::edge_type& edge( T& g, unsigned long i, unsigned long j ); /*! requires - T is an implementation of graph/graph_kernel_abstract.h - g.has_edge(i,j) ensures - returns a reference to the edge data for the edge connecting nodes i and j (i.e. returns g.node(i).edge(x) such that g.node(i).neighbor(x).index() == j) !*/ template < typename T > typename const T::edge_type& edge( const T& g, unsigned long i, unsigned long j ); /*! requires - T is an implementation of graph/graph_kernel_abstract.h - g.has_edge(i,j) ensures - returns a const reference to the edge data for the edge connecting nodes i and j (i.e. returns g.node(i).edge(x) such that g.node(i).neighbor(x).index() == j) !*/ // ---------------------------------------------------------------------------------------- template < typename T > typename T::edge_type& edge( T& g, unsigned long parent_idx, unsigned long child_idx ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h - g.has_edge(parent_idx,child_idx) ensures - returns a reference to the edge data for the directed edge connecting parent node g.node(parent_idx) to child node g.node(child_idx). !*/ template < typename T > typename const T::edge_type& edge( const T& g, unsigned long parent_idx, unsigned long child_idx ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h - g.has_edge(parent_idx,child_idx) ensures - returns a const reference to the edge data for the directed edge connecting parent node g.node(parent_idx) to child node g.node(child_idx). !*/ // ---------------------------------------------------------------------------------------- template < typename T > bool graph_has_symmetric_edges ( const T& graph ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h ensures - if (All nodes have either 0 edges between them or 2 edges between them. That is, if there is an edge pointing from node A to node B then there is also an edge from B to A) then - returns true - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename T > bool graph_contains_directed_cycle ( const T& graph ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h ensures - if (there is a directed cycle in the given graph) then - returns true - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename T > bool graph_contains_undirected_cycle ( const T& graph ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h or T is an implementation of graph/graph_kernel_abstract.h ensures - if (there is an undirected cycle in the given graph) then - returns true - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename T > bool graph_contains_length_one_cycle ( const T& graph ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h or T is an implementation of graph/graph_kernel_abstract.h ensures - if (it is the case that graph.has_edge(i,i) == true for some i) then - returns true - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename src_type, typename dest_type > void copy_graph_structure ( const src_type& src, dest_type& dest ); /*! requires - src_type is an implementation of directed_graph/directed_graph_kernel_abstract.h or src_type is an implementation of graph/graph_kernel_abstract.h - dest_type is an implementation of directed_graph/directed_graph_kernel_abstract.h or dest_type is an implementation of graph/graph_kernel_abstract.h - dest_type is not a directed_graph when src_type is a graph ensures - this function copies the graph structure from src into dest - #dest.number_of_nodes() == src.number_of_nodes() - for all valid i: #dest.node(i).item has an initial value for its type - for all valid i and j: - if (src.has_edge(i,j) == true) then - #dest.has_edge(i,j) == true !*/ // ---------------------------------------------------------------------------------------- template < typename src_type, typename dest_type > void copy_graph ( const src_type& src, dest_type& dest ); /*! requires - src_type is an implementation of directed_graph/directed_graph_kernel_abstract.h or src_type is an implementation of graph/graph_kernel_abstract.h - dest_type is an implementation of directed_graph/directed_graph_kernel_abstract.h or dest_type is an implementation of graph/graph_kernel_abstract.h - src_type and dest_type are both the same kind of graph. That is, they are either both directed or both undirected. - the node and edge data in the graphs are copyable via operator=(). ensures - #dest is a complete duplicate of src. !*/ // ---------------------------------------------------------------------------------------- template < typename directed_graph_type, typename graph_type > void create_moral_graph ( const directed_graph_type& g, graph_type& moral_graph ); /*! requires - directed_graph_type is an implementation of directed_graph/directed_graph_kernel_abstract.h - graph_type is an implementation of graph/graph_kernel_abstract.h - graph_contains_directed_cycle(g) == false ensures - #moral_graph == the moralized version of the directed graph g - #moral_graph.number_of_nodes() == g.number_of_nodes() - for all valid i and j: - if (g.has_edge(i,j) == true) then - #moral_graph.has_edge(i,j) == true (i.e. all the edges that are in g are also in moral_graph) - for all valid i: - for all pairs p1 and p2 such that p1 != p2 and g.node(p1) and g.node(p2) are both parents of node g.node(i): - #moral_graph.has_edge(p1,p2) == true (i.e. all the parents of a node are connected in the moral graph) !*/ // ---------------------------------------------------------------------------------------- template < typename T, typename S > void find_connected_nodes ( const T& n, S& visited ); /*! requires - T is a node_type from an implementation of directed_graph/directed_graph_kernel_abstract.h or T is a node_type from an implementation of graph/graph_kernel_abstract.h - S is an implementation of set/set_kernel_abstract.h ensures - let G be the graph that contains node n - #visited.is_member(n.index()) == true - for all i such that there is an undirected path from n to G.node(i): - #visited.is_member(i) == true - for all i such that visited.is_member(i): - #visited.is_member(i) == true (i.e. this function doesn't remove anything from visited. So if it contains stuff when you call this function then it will still contain those things once the function ends) !*/ // ---------------------------------------------------------------------------------------- template < typename T > bool graph_is_connected ( const T& g ); /*! requires - T is an implementation of directed_graph/directed_graph_kernel_abstract.h or T is an implementation of graph/graph_kernel_abstract.h ensures - every node in g has an undirected path to every other node in g. I.e. g is a connected graph !*/ // ---------------------------------------------------------------------------------------- template < typename graph_type, typename sets_of_int > bool is_clique ( const graph_type& g, const sets_of_int& clique ); /*! requires - graph_type is an implementation of graph/graph_kernel_abstract.h - sets_of_int is an implementation of set/set_kernel_abstract.h and it contains unsigned long objects. - graph_contains_length_one_cycle(g) == false - for all x such that clique.is_member(x): - x < g.number_of_nodes() ensures - if (it is true that for all i and j such that clique.is_member(i) and clique.is_member(j) then g.has_edge(i,j) == true) then - returns true - else - returns false - if (clique.size() == 0) then - returns true (this is just a special case of the above condition) - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename graph_type, typename sets_of_int > bool is_maximal_clique ( const graph_type& g, const sets_of_int& clique ); /*! requires - graph_type is an implementation of graph/graph_kernel_abstract.h - sets_of_int is an implementation of set/set_kernel_abstract.h and it contains unsigned long objects. - graph_contains_length_one_cycle(g) == false - for all x such that clique.is_member(x): - x < g.number_of_nodes() - is_clique(g,clique) == true ensures - if (there is no x such that clique.is_member(x) == false and g.has_edge(i,x) for all i such that cliques.is_member(i)) then - returns true - else - returns false - if (clique.size() == 0) then - returns true (this is just a special case of the above condition) - else - returns false !*/ // ---------------------------------------------------------------------------------------- template < typename graph_type, typename set_of_sets_of_int > void triangulate_graph_and_find_cliques ( graph_type& g, set_of_sets_of_int& cliques ); /*! requires - graph_type is an implementation of graph/graph_kernel_abstract.h - set_of_sets_of_int is an implementation of set/set_kernel_abstract.h and it contains another set object which is comparable by operator< and itself contains unsigned long objects. (e.g. set::compare_1a>::kernel_1a) - graph_contains_length_one_cycle(g) == false - graph_is_connected(g) == true ensures - #g.number_of_nodes() == g.number_of_nodes() - all this function does to g is add edges to it until g becomes a chordal graph where a chordal graph is a graph where each cycle in the graph of 4 or more nodes has an edge joining two nodes that are not adjacent in the cycle. - #cliques.size() == the number of maximal cliques in the graph #g - for all valid sets S such that #cliques.is_member(S): - for all valid integers i and j such that S.is_member(i) == true and S.is_member(j) == true and i != j: - #g.has_edge(i,j) == true !*/ // ---------------------------------------------------------------------------------------- template < typename graph_type, typename join_tree_type > bool is_join_tree ( const graph_type& g, const join_tree_type& join_tree ); /*! requires - graph_type is an implementation of directed_graph/directed_graph_kernel_abstract.h or graph_type is an implementation of graph/graph_kernel_abstract.h - join_tree_type is an implementation of graph/graph_kernel_abstract.h - join_tree_type::type is an implementation of set/set_compare_abstract.h and this set type contains unsigned long objects. - join_tree_type::edge_type is an implementation of set/set_compare_abstract.h and this set type contains unsigned long objects. - graph_contains_length_one_cycle(g) == false - graph_is_connected(g) == true ensures - if (join_tree is a valid join tree of graph g. That is, join_tree is a tree decomposition of g) then - returns true - else - returns false - a join tree of graph g is defined as follows: - graph_contains_undirected_cycle(join_tree) == false - graph_is_connected(join_tree) == true - for all valid i: - join_tree.node(i).item == a non-empty set containing node indexes from g. That is, this set contains all the nodes from g that are in this cluster in the join tree - for all valid i and j such that i and j are both < join_tree.number_of_nodes() - let X be the set of numbers that is contained in both join_tree.node(i).item and join_tree.node(j).item - It is the case that all nodes on the unique path between join_tree.node(i) and join_tree.node(j) contain the numbers from X in their sets. - edge(join_tree,i,j) == a set containing the intersection of join_tree.node(i).item and join_tree.node(j).item - the node index for every node in g appears in some node in join_tree at least once. !*/ // ---------------------------------------------------------------------------------------- template < typename graph_type, typename join_tree_type > void create_join_tree ( const graph_type& g, join_tree_type& join_tree ); /*! requires - graph_type is an implementation of graph/graph_kernel_abstract.h - join_tree_type is an implementation of graph/graph_kernel_abstract.h - join_tree_type::type is an implementation of set/set_compare_abstract.h and this set type contains unsigned long objects. - join_tree_type::edge_type is an implementation of set/set_compare_abstract.h and this set type contains unsigned long objects. - graph_contains_length_one_cycle(g) == false - graph_is_connected(g) == true ensures - #is_join_tree(g, join_tree) == true !*/ // ---------------------------------------------------------------------------------------- } #endif // DLIB_GRAPH_UTILs_ABSTRACT_