// Copyright (C) 2011 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_HASHED_IMAGE_FEATUrES_Hh_ #define DLIB_HASHED_IMAGE_FEATUrES_Hh_ #include "../lsh/projection_hash.h" #include "hashed_feature_image_abstract.h" #include #include "../algs.h" #include "../matrix.h" #include "../statistics.h" namespace dlib { // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type_ = projection_hash > class hashed_feature_image : noncopyable { public: typedef feature_extractor feature_extractor_type; typedef hash_function_type_ hash_function_type; typedef std::vector > descriptor_type; hashed_feature_image ( ); void clear ( ); void set_hash ( const hash_function_type& hash_ ); const hash_function_type& get_hash ( ) const; void copy_configuration ( const feature_extractor& item ); void copy_configuration ( const hashed_feature_image& item ); template < typename image_type > inline void load ( const image_type& img ); inline size_t size ( ) const; inline long nr ( ) const; inline long nc ( ) const; inline long get_num_dimensions ( ) const; void use_relative_feature_weights ( ); void use_uniform_feature_weights ( ); bool uses_uniform_feature_weights ( ) const; inline const descriptor_type& operator() ( long row, long col ) const; inline const rectangle get_block_rect ( long row, long col ) const; inline const point image_to_feat_space ( const point& p ) const; inline const rectangle image_to_feat_space ( const rectangle& rect ) const; inline const point feat_to_image_space ( const point& p ) const; inline const rectangle feat_to_image_space ( const rectangle& rect ) const; template friend void serialize ( const hashed_feature_image& item, std::ostream& out ); template friend void deserialize ( hashed_feature_image& item, std::istream& in ); private: array2d feats; feature_extractor fe; hash_function_type phash; std::vector feat_counts; bool uniform_feature_weights; // This is a transient variable. It is just here so it doesn't have to be // reallocated over and over inside operator() mutable descriptor_type hash_feats; }; // ---------------------------------------------------------------------------------------- template void serialize ( const hashed_feature_image& item, std::ostream& out ) { int version = 1; serialize(version, out); serialize(item.feats, out); serialize(item.fe, out); serialize(item.phash, out); serialize(item.feat_counts, out); serialize(item.uniform_feature_weights, out); } template void deserialize ( hashed_feature_image& item, std::istream& in ) { int version = 0; deserialize(version, in); if (version != 1) throw serialization_error("Unexpected version found while deserializing a dlib::hashed_feature_image object."); deserialize(item.feats, in); deserialize(item.fe, in); deserialize(item.phash, in); deserialize(item.feat_counts, in); deserialize(item.uniform_feature_weights, in); } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // hashed_feature_image member functions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > hashed_feature_image:: hashed_feature_image ( ) { clear(); hash_feats.resize(1); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: clear ( ) { fe.clear(); phash = hash_function_type(); feats.clear(); feat_counts.clear(); uniform_feature_weights = false; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: set_hash ( const hash_function_type& hash_ ) { phash = hash_; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const hash_function_type& hashed_feature_image:: get_hash ( ) const { return phash; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: copy_configuration ( const feature_extractor& item ) { fe.copy_configuration(item); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: copy_configuration ( const hashed_feature_image& item ) { fe.copy_configuration(item.fe); phash = item.phash; uniform_feature_weights = item.uniform_feature_weights; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > template < typename image_type > void hashed_feature_image:: load ( const image_type& img ) { fe.load(img); if (fe.size() != 0) { feats.set_size(fe.nr(), fe.nc()); feat_counts.assign(phash.num_hash_bins(),1); if (uniform_feature_weights) { for (long r = 0; r < feats.nr(); ++r) { for (long c = 0; c < feats.nc(); ++c) { feats[r][c] = phash(fe(r,c)); } } } else { for (long r = 0; r < feats.nr(); ++r) { for (long c = 0; c < feats.nc(); ++c) { feats[r][c] = phash(fe(r,c)); feat_counts[feats[r][c]]++; } } } } else { feats.set_size(0,0); } if (!uniform_feature_weights) { // use the inverse frequency as the scale for each feature. We also scale // these counts so that they are invariant to the size of the image (we scale // them so they all look like they come from a 500x400 images). const double scale = image_size(img)/(500.0*400.0); for (unsigned long i = 0; i < feat_counts.size(); ++i) { feat_counts[i] = scale/feat_counts[i]; } } fe.unload(); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > size_t hashed_feature_image:: size ( ) const { return feats.size(); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > long hashed_feature_image:: nr ( ) const { return feats.nr(); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > long hashed_feature_image:: nc ( ) const { return feats.nc(); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > long hashed_feature_image:: get_num_dimensions ( ) const { return phash.num_hash_bins(); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: use_relative_feature_weights ( ) { uniform_feature_weights = false; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > void hashed_feature_image:: use_uniform_feature_weights ( ) { uniform_feature_weights = true; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > bool hashed_feature_image:: uses_uniform_feature_weights ( ) const { return uniform_feature_weights; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const std::vector >& hashed_feature_image:: operator() ( long row, long col ) const { // make sure requires clause is not broken DLIB_ASSERT(0 <= row && row < nr() && 0 <= col && col < nc(), "\t descriptor_type hashed_feature_image::operator(row,col)" << "\n\t Invalid inputs were given to this function" << "\n\t row: " << row << "\n\t col: " << col << "\n\t nr(): " << nr() << "\n\t nc(): " << nc() << "\n\t this: " << this ); hash_feats[0] = std::make_pair(feats[row][col],feat_counts[feats[row][col]]); return hash_feats; } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const rectangle hashed_feature_image:: get_block_rect ( long row, long col ) const { return fe.get_block_rect(row,col); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const point hashed_feature_image:: image_to_feat_space ( const point& p ) const { return fe.image_to_feat_space(p); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const rectangle hashed_feature_image:: image_to_feat_space ( const rectangle& rect ) const { return fe.image_to_feat_space(rect); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const point hashed_feature_image:: feat_to_image_space ( const point& p ) const { return fe.feat_to_image_space(p); } // ---------------------------------------------------------------------------------------- template < typename feature_extractor, typename hash_function_type > const rectangle hashed_feature_image:: feat_to_image_space ( const rectangle& rect ) const { return fe.feat_to_image_space(rect); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_HASHED_IMAGE_FEATUrES_Hh_