// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This example shows how to train a semantic segmentation net using the PASCAL VOC2012 dataset. For an introduction to what segmentation is, see the accompanying header file dnn_semantic_segmentation_ex.h. Instructions how to run the example: 1. Download the PASCAL VOC2012 data, and untar it somewhere. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar 2. Build the dnn_semantic_segmentation_train_ex example program. 3. Run: ./dnn_semantic_segmentation_train_ex /path/to/VOC2012 4. Wait while the network is being trained. 5. Build the dnn_semantic_segmentation_ex example program. 6. Run: ./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images It would be a good idea to become familiar with dlib's DNN tooling before reading this example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp before reading this example program. */ #include "dnn_semantic_segmentation_ex.h" #include <iostream> #include <dlib/data_io.h> #include <dlib/image_transforms.h> #include <dlib/dir_nav.h> #include <iterator> #include <thread> using namespace std; using namespace dlib; // A single training sample. A mini-batch comprises many of these. struct training_sample { matrix<rgb_pixel> input_image; matrix<uint16_t> label_image; // The ground-truth label of each pixel. }; // ---------------------------------------------------------------------------------------- rectangle make_random_cropping_rect( const matrix<rgb_pixel>& img, dlib::rand& rnd ) { // figure out what rectangle we want to crop from the image double mins = 0.466666666, maxs = 0.875; auto scale = mins + rnd.get_random_double()*(maxs-mins); auto size = scale*std::min(img.nr(), img.nc()); rectangle rect(size, size); // randomly shift the box around point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()), rnd.get_random_32bit_number()%(img.nr()-rect.height())); return move_rect(rect, offset); } // ---------------------------------------------------------------------------------------- void randomly_crop_image ( const matrix<rgb_pixel>& input_image, const matrix<uint16_t>& label_image, training_sample& crop, dlib::rand& rnd ) { const auto rect = make_random_cropping_rect(input_image, rnd); const chip_details chip_details(rect, chip_dims(227, 227)); // Crop the input image. extract_image_chip(input_image, chip_details, crop.input_image, interpolate_bilinear()); // Crop the labels correspondingly. However, note that here bilinear // interpolation would make absolutely no sense - you wouldn't say that // a bicycle is half-way between an aeroplane and a bird, would you? extract_image_chip(label_image, chip_details, crop.label_image, interpolate_nearest_neighbor()); // Also randomly flip the input image and the labels. if (rnd.get_random_double() > 0.5) { crop.input_image = fliplr(crop.input_image); crop.label_image = fliplr(crop.label_image); } // And then randomly adjust the colors. apply_random_color_offset(crop.input_image, rnd); } // ---------------------------------------------------------------------------------------- // Calculate the per-pixel accuracy on a dataset whose file names are supplied as a parameter. double calculate_accuracy(anet_type& anet, const std::vector<image_info>& dataset) { int num_right = 0; int num_wrong = 0; matrix<rgb_pixel> input_image; matrix<rgb_pixel> rgb_label_image; matrix<uint16_t> index_label_image; matrix<uint16_t> net_output; for (const auto& image_info : dataset) { // Load the input image. load_image(input_image, image_info.image_filename); // Load the ground-truth (RGB) labels. load_image(rgb_label_image, image_info.class_label_filename); // Create predictions for each pixel. At this point, the type of each prediction // is an index (a value between 0 and 20). Note that the net may return an image // that is not exactly the same size as the input. const matrix<uint16_t> temp = anet(input_image); // Convert the RGB values to indexes. rgb_label_image_to_index_label_image(rgb_label_image, index_label_image); // Crop the net output to be exactly the same size as the input. const chip_details chip_details( centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()), chip_dims(input_image.nr(), input_image.nc()) ); extract_image_chip(temp, chip_details, net_output, interpolate_nearest_neighbor()); const long nr = index_label_image.nr(); const long nc = index_label_image.nc(); // Compare the predicted values to the ground-truth values. for (long r = 0; r < nr; ++r) { for (long c = 0; c < nc; ++c) { const uint16_t truth = index_label_image(r, c); if (truth != dlib::loss_multiclass_log_per_pixel_::label_to_ignore) { const uint16_t prediction = net_output(r, c); if (prediction == truth) { ++num_right; } else { ++num_wrong; } } } } } // Return the accuracy estimate. return num_right / static_cast<double>(num_right + num_wrong); } // ---------------------------------------------------------------------------------------- int main(int argc, char** argv) try { if (argc < 2 || argc > 3) { cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl; cout << endl; cout << "You call this program like this: " << endl; cout << "./dnn_semantic_segmentation_train_ex /path/to/VOC2012 [minibatch-size]" << endl; return 1; } cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl; const auto listing = get_pascal_voc2012_train_listing(argv[1]); cout << "images in dataset: " << listing.size() << endl; if (listing.size() == 0) { cout << "Didn't find the VOC2012 dataset. " << endl; return 1; } // a mini-batch smaller than the default can be used with GPUs having less memory const unsigned int minibatch_size = argc == 3 ? std::stoi(argv[2]) : 23; cout << "mini-batch size: " << minibatch_size << endl; const double initial_learning_rate = 0.1; const double weight_decay = 0.0001; const double momentum = 0.9; bnet_type bnet; dnn_trainer<bnet_type> trainer(bnet,sgd(weight_decay, momentum)); trainer.be_verbose(); trainer.set_learning_rate(initial_learning_rate); trainer.set_synchronization_file("pascal_voc2012_trainer_state_file.dat", std::chrono::minutes(10)); // This threshold is probably excessively large. trainer.set_iterations_without_progress_threshold(5000); // Since the progress threshold is so large might as well set the batch normalization // stats window to something big too. set_all_bn_running_stats_window_sizes(bnet, 1000); // Output training parameters. cout << endl << trainer << endl; std::vector<matrix<rgb_pixel>> samples; std::vector<matrix<uint16_t>> labels; // Start a bunch of threads that read images from disk and pull out random crops. It's // important to be sure to feed the GPU fast enough to keep it busy. Using multiple // thread for this kind of data preparation helps us do that. Each thread puts the // crops into the data queue. dlib::pipe<training_sample> data(200); auto f = [&data, &listing](time_t seed) { dlib::rand rnd(time(0)+seed); matrix<rgb_pixel> input_image; matrix<rgb_pixel> rgb_label_image; matrix<uint16_t> index_label_image; training_sample temp; while(data.is_enabled()) { // Pick a random input image. const image_info& image_info = listing[rnd.get_random_32bit_number()%listing.size()]; // Load the input image. load_image(input_image, image_info.image_filename); // Load the ground-truth (RGB) labels. load_image(rgb_label_image, image_info.class_label_filename); // Convert the RGB values to indexes. rgb_label_image_to_index_label_image(rgb_label_image, index_label_image); // Randomly pick a part of the image. randomly_crop_image(input_image, index_label_image, temp, rnd); // Push the result to be used by the trainer. data.enqueue(temp); } }; std::thread data_loader1([f](){ f(1); }); std::thread data_loader2([f](){ f(2); }); std::thread data_loader3([f](){ f(3); }); std::thread data_loader4([f](){ f(4); }); // The main training loop. Keep making mini-batches and giving them to the trainer. // We will run until the learning rate has dropped by a factor of 1e-4. while(trainer.get_learning_rate() >= 1e-4) { samples.clear(); labels.clear(); // make a mini-batch training_sample temp; while(samples.size() < minibatch_size) { data.dequeue(temp); samples.push_back(std::move(temp.input_image)); labels.push_back(std::move(temp.label_image)); } trainer.train_one_step(samples, labels); } // Training done, tell threads to stop and make sure to wait for them to finish before // moving on. data.disable(); data_loader1.join(); data_loader2.join(); data_loader3.join(); data_loader4.join(); // also wait for threaded processing to stop in the trainer. trainer.get_net(); bnet.clean(); cout << "saving network" << endl; serialize(semantic_segmentation_net_filename) << bnet; // Make a copy of the network to use it for inference. anet_type anet = bnet; cout << "Testing the network..." << endl; // Find the accuracy of the newly trained network on both the training and the validation sets. cout << "train accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_train_listing(argv[1])) << endl; cout << "val accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_val_listing(argv[1])) << endl; } catch(std::exception& e) { cout << e.what() << endl; }