// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This is an example illustrating the use the general purpose non-linear least squares optimization routines from the dlib C++ Library. This example program will demonstrate how these routines can be used for data fitting. In particular, we will generate a set of data and then use the least squares routines to infer the parameters of the model which generated the data. */ #include <dlib/optimization.h> #include <iostream> #include <vector> using namespace std; using namespace dlib; // ---------------------------------------------------------------------------------------- typedef matrix<double,2,1> input_vector; typedef matrix<double,3,1> parameter_vector; // ---------------------------------------------------------------------------------------- // We will use this function to generate data. It represents a function of 2 variables // and 3 parameters. The least squares procedure will be used to infer the values of // the 3 parameters based on a set of input/output pairs. double model ( const input_vector& input, const parameter_vector& params ) { const double p0 = params(0); const double p1 = params(1); const double p2 = params(2); const double i0 = input(0); const double i1 = input(1); const double temp = p0*i0 + p1*i1 + p2; return temp*temp; } // ---------------------------------------------------------------------------------------- // This function is the "residual" for a least squares problem. It takes an input/output // pair and compares it to the output of our model and returns the amount of error. The idea // is to find the set of parameters which makes the residual small on all the data pairs. double residual ( const std::pair<input_vector, double>& data, const parameter_vector& params ) { return model(data.first, params) - data.second; } // ---------------------------------------------------------------------------------------- // This function is the derivative of the residual() function with respect to the parameters. parameter_vector residual_derivative ( const std::pair<input_vector, double>& data, const parameter_vector& params ) { parameter_vector der; const double p0 = params(0); const double p1 = params(1); const double p2 = params(2); const double i0 = data.first(0); const double i1 = data.first(1); const double temp = p0*i0 + p1*i1 + p2; der(0) = i0*2*temp; der(1) = i1*2*temp; der(2) = 2*temp; return der; } // ---------------------------------------------------------------------------------------- int main() { try { // randomly pick a set of parameters to use in this example const parameter_vector params = 10*randm(3,1); cout << "params: " << trans(params) << endl; // Now let's generate a bunch of input/output pairs according to our model. std::vector<std::pair<input_vector, double> > data_samples; input_vector input; for (int i = 0; i < 1000; ++i) { input = 10*randm(2,1); const double output = model(input, params); // save the pair data_samples.push_back(make_pair(input, output)); } // Before we do anything, let's make sure that our derivative function defined above matches // the approximate derivative computed using central differences (via derivative()). // If this value is big then it means we probably typed the derivative function incorrectly. cout << "derivative error: " << length(residual_derivative(data_samples[0], params) - derivative(residual)(data_samples[0], params) ) << endl; // Now let's use the solve_least_squares_lm() routine to figure out what the // parameters are based on just the data_samples. parameter_vector x; x = 1; cout << "Use Levenberg-Marquardt" << endl; // Use the Levenberg-Marquardt method to determine the parameters which // minimize the sum of all squared residuals. solve_least_squares_lm(objective_delta_stop_strategy(1e-7).be_verbose(), residual, residual_derivative, data_samples, x); // Now x contains the solution. If everything worked it will be equal to params. cout << "inferred parameters: "<< trans(x) << endl; cout << "solution error: "<< length(x - params) << endl; cout << endl; x = 1; cout << "Use Levenberg-Marquardt, approximate derivatives" << endl; // If we didn't create the residual_derivative function then we could // have used this method which numerically approximates the derivatives for you. solve_least_squares_lm(objective_delta_stop_strategy(1e-7).be_verbose(), residual, derivative(residual), data_samples, x); // Now x contains the solution. If everything worked it will be equal to params. cout << "inferred parameters: "<< trans(x) << endl; cout << "solution error: "<< length(x - params) << endl; cout << endl; x = 1; cout << "Use Levenberg-Marquardt/quasi-newton hybrid" << endl; // This version of the solver uses a method which is appropriate for problems // where the residuals don't go to zero at the solution. So in these cases // it may provide a better answer. solve_least_squares(objective_delta_stop_strategy(1e-7).be_verbose(), residual, residual_derivative, data_samples, x); // Now x contains the solution. If everything worked it will be equal to params. cout << "inferred parameters: "<< trans(x) << endl; cout << "solution error: "<< length(x - params) << endl; } catch (std::exception& e) { cout << e.what() << endl; } } // Example output: /* params: 8.40188 3.94383 7.83099 derivative error: 9.78267e-06 Use Levenberg-Marquardt iteration: 0 objective: 2.14455e+10 iteration: 1 objective: 1.96248e+10 iteration: 2 objective: 1.39172e+10 iteration: 3 objective: 1.57036e+09 iteration: 4 objective: 2.66917e+07 iteration: 5 objective: 4741.9 iteration: 6 objective: 0.000238674 iteration: 7 objective: 7.8815e-19 iteration: 8 objective: 0 inferred parameters: 8.40188 3.94383 7.83099 solution error: 0 Use Levenberg-Marquardt, approximate derivatives iteration: 0 objective: 2.14455e+10 iteration: 1 objective: 1.96248e+10 iteration: 2 objective: 1.39172e+10 iteration: 3 objective: 1.57036e+09 iteration: 4 objective: 2.66917e+07 iteration: 5 objective: 4741.87 iteration: 6 objective: 0.000238701 iteration: 7 objective: 1.0571e-18 iteration: 8 objective: 4.12469e-22 inferred parameters: 8.40188 3.94383 7.83099 solution error: 5.34754e-15 Use Levenberg-Marquardt/quasi-newton hybrid iteration: 0 objective: 2.14455e+10 iteration: 1 objective: 1.96248e+10 iteration: 2 objective: 1.3917e+10 iteration: 3 objective: 1.5572e+09 iteration: 4 objective: 2.74139e+07 iteration: 5 objective: 5135.98 iteration: 6 objective: 0.000285539 iteration: 7 objective: 1.15441e-18 iteration: 8 objective: 3.38834e-23 inferred parameters: 8.40188 3.94383 7.83099 solution error: 1.77636e-15 */