// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_LAPACk_GETRF_Hh_ #define DLIB_LAPACk_GETRF_Hh_ #include "fortran_id.h" #include "../matrix.h" namespace dlib { namespace lapack { namespace binding { extern "C" { void DLIB_FORTRAN_ID(dgetrf) (const integer *m, const integer *n, double *a, const integer *lda, integer *ipiv, integer *info); void DLIB_FORTRAN_ID(sgetrf) (const integer *m, const integer *n, float *a, const integer *lda, integer *ipiv, integer *info); } inline int getrf (integer m, integer n, double *a, integer lda, integer *ipiv) { integer info = 0; DLIB_FORTRAN_ID(dgetrf)(&m, &n, a, &lda, ipiv, &info); return info; } inline int getrf (integer m, integer n, float *a, integer lda, integer *ipiv) { integer info = 0; DLIB_FORTRAN_ID(sgetrf)(&m, &n, a, &lda, ipiv, &info); return info; } } // ------------------------------------------------------------------------------------ /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGETRF computes an LU factorization of a general M-by-N matrix A */ /* using partial pivoting with row interchanges. */ /* The factorization has the form */ /* A = P * L * U */ /* where P is a permutation matrix, L is lower triangular with unit */ /* diagonal elements (lower trapezoidal if m > n), and U is upper */ /* triangular (upper trapezoidal if m < n). */ /* This is the right-looking Level 3 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the M-by-N matrix to be factored. */ /* On exit, the factors L and U from the factorization */ /* A = P*L*U; the unit diagonal elements of L are not stored. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* IPIV (output) INTEGER array, dimension (min(M,N)) */ /* The pivot indices; for 1 <= i <= min(M,N), row i of the */ /* matrix was interchanged with row IPIV(i). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, and division by zero will occur if it is used */ /* to solve a system of equations. */ // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NR2, long NC1, long NC2, typename MM, typename layout > int getrf ( matrix<T,NR1,NC1,MM,column_major_layout>& a, matrix<integer,NR2,NC2,MM,layout>& ipiv ) { const long m = a.nr(); const long n = a.nc(); ipiv.set_size(std::min(m,n), 1); // compute the actual decomposition return binding::getrf(m, n, &a(0,0), a.nr(), &ipiv(0,0)); } // ------------------------------------------------------------------------------------ } } // ---------------------------------------------------------------------------------------- #endif // DLIB_LAPACk_GETRF_Hh_