// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_LAPACk_BDC_Hh_ #define DLIB_LAPACk_BDC_Hh_ #include "fortran_id.h" #include "../matrix.h" namespace dlib { namespace lapack { namespace binding { extern "C" { void DLIB_FORTRAN_ID(dpbtrf) (const char *uplo, const integer *n, const integer *kd, double *ab, const integer *ldab, integer *info); void DLIB_FORTRAN_ID(spbtrf) (const char *uplo, const integer *n, const integer *kd, float *ab, const integer *ldab, integer *info); } inline integer pbtrf (const char uplo, const integer n, const integer kd, double* ab, const integer ldab) { integer info = 0; DLIB_FORTRAN_ID(dpbtrf)(&uplo, &n, &kd, ab, &ldab, &info); return info; } inline integer pbtrf (const char uplo, const integer n, const integer kd, float* ab, const integer ldab) { integer info = 0; DLIB_FORTRAN_ID(spbtrf)(&uplo, &n, &kd, ab, &ldab, &info); return info; } } // ------------------------------------------------------------------------------------ /* DPBTRF(l) LAPACK routine (version 1.1) DPBTRF(l) NAME DPBTRF - compute the Cholesky factorization of a real symmetric positive definite band matrix A SYNOPSIS SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO ) CHARACTER UPLO INTEGER INFO, KD, LDAB, N DOUBLE PRECISION AB( LDAB, * ) PURPOSE DPBTRF computes the Cholesky factorization of a real symmetric positive definite band matrix A. The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. ARGUMENTS UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, if INFO = 0, the triangular factor U or L from the Chole- sky factorization A = U**T*U or A = L*L**T of the band matrix A, in the same storage format as A. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. FURTHER DETAILS The band storage scheme is illustrated by the following example, when N = 6, KD = 2, and UPLO = 'U': On entry: On exit: * * a13 a24 a35 a46 * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 Similarly, if UPLO = 'L' the format of A is as follows: On entry: On exit: a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * a31 a42 a53 a64 * * l31 l42 l53 l64 * * Array elements marked * are not used by the routine. Contributed by Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */ // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NC1, typename MM > int pbtrf ( char uplo, matrix<T,NR1,NC1,MM,column_major_layout>& ab ) { const long ldab = ab.nr(); const long n = ab.nc(); const long kd = ldab - 1; // assume fully packed int info = binding::pbtrf(uplo, n, kd, &ab(0,0), ldab); return info; } // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NC1, typename MM > int pbtrf ( char uplo, matrix<T,NR1,NC1,MM,row_major_layout>& ab ) { const long ldab = ab.nr(); const long n = ab.nc(); const long kd = ldab - 1; // assume fully packed matrix<T,NC1,NR1,MM,row_major_layout> abt = trans(ab); int info = binding::pbtrf(uplo, n, kd, &abt(0,0), ldab); ab = trans(abt); return info; } // ------------------------------------------------------------------------------------ } } // ---------------------------------------------------------------------------------------- #endif // DLIB_LAPACk_BDC_Hh_