<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
   "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
  <title></title>
  <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  <style type="text/css">
td.linenos { background-color: #f0f0f0; padding-right: 10px; }
span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }
pre { line-height: 125%; }
body .hll { background-color: #ffffcc }
body  { background: #ffffff; }
body .c { color: #008000 } /* Comment */
body .err { border: 1px solid #FF0000 } /* Error */
body .k { color: #0000ff } /* Keyword */
body .ch { color: #008000 } /* Comment.Hashbang */
body .cm { color: #008000 } /* Comment.Multiline */
body .cp { color: #0000ff } /* Comment.Preproc */
body .cpf { color: #008000 } /* Comment.PreprocFile */
body .c1 { color: #008000 } /* Comment.Single */
body .cs { color: #008000 } /* Comment.Special */
body .ge { font-style: italic } /* Generic.Emph */
body .gh { font-weight: bold } /* Generic.Heading */
body .gp { font-weight: bold } /* Generic.Prompt */
body .gs { font-weight: bold } /* Generic.Strong */
body .gu { font-weight: bold } /* Generic.Subheading */
body .kc { color: #0000ff } /* Keyword.Constant */
body .kd { color: #0000ff } /* Keyword.Declaration */
body .kn { color: #0000ff } /* Keyword.Namespace */
body .kp { color: #0000ff } /* Keyword.Pseudo */
body .kr { color: #0000ff } /* Keyword.Reserved */
body .kt { color: #2b91af } /* Keyword.Type */
body .s { color: #a31515 } /* Literal.String */
body .nc { color: #2b91af } /* Name.Class */
body .ow { color: #0000ff } /* Operator.Word */
body .sa { color: #a31515 } /* Literal.String.Affix */
body .sb { color: #a31515 } /* Literal.String.Backtick */
body .sc { color: #a31515 } /* Literal.String.Char */
body .dl { color: #a31515 } /* Literal.String.Delimiter */
body .sd { color: #a31515 } /* Literal.String.Doc */
body .s2 { color: #a31515 } /* Literal.String.Double */
body .se { color: #a31515 } /* Literal.String.Escape */
body .sh { color: #a31515 } /* Literal.String.Heredoc */
body .si { color: #a31515 } /* Literal.String.Interpol */
body .sx { color: #a31515 } /* Literal.String.Other */
body .sr { color: #a31515 } /* Literal.String.Regex */
body .s1 { color: #a31515 } /* Literal.String.Single */
body .ss { color: #a31515 } /* Literal.String.Symbol */

  </style>
</head>
<body>
<h2></h2>

<div class="highlight"><pre><span></span><span class="ch">#!/usr/bin/python</span>
<span class="c1"># The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt</span>
<span class="c1">#</span>
<span class="c1">#   This example program shows how to use dlib&#39;s implementation of the paper:</span>
<span class="c1">#   One Millisecond Face Alignment with an Ensemble of Regression Trees by</span>
<span class="c1">#   Vahid Kazemi and Josephine Sullivan, CVPR 2014</span>
<span class="c1">#</span>
<span class="c1">#   In particular, we will train a face landmarking model based on a small</span>
<span class="c1">#   dataset and then evaluate it.  If you want to visualize the output of the</span>
<span class="c1">#   trained model on some images then you can run the</span>
<span class="c1">#   <a href="face_landmark_detection.py.html">face_landmark_detection.py</a> example program with predictor.dat as the input</span>
<span class="c1">#   model.</span>
<span class="c1">#</span>
<span class="c1">#   It should also be noted that this kind of model, while often used for face</span>
<span class="c1">#   landmarking, is quite general and can be used for a variety of shape</span>
<span class="c1">#   prediction tasks.  But here we demonstrate it only on a simple face</span>
<span class="c1">#   landmarking task.</span>
<span class="c1">#</span>
<span class="c1"># COMPILING/INSTALLING THE DLIB PYTHON INTERFACE</span>
<span class="c1">#   You can install dlib using the command:</span>
<span class="c1">#       pip install dlib</span>
<span class="c1">#</span>
<span class="c1">#   Alternatively, if you want to compile dlib yourself then go into the dlib</span>
<span class="c1">#   root folder and run:</span>
<span class="c1">#       python setup.py install</span>
<span class="c1">#</span>
<span class="c1">#   Compiling dlib should work on any operating system so long as you have</span>
<span class="c1">#   CMake installed.  On Ubuntu, this can be done easily by running the</span>
<span class="c1">#   command:</span>
<span class="c1">#       sudo apt-get install cmake</span>
<span class="c1">#</span>
<span class="c1">#   Also note that this example requires Numpy which can be installed</span>
<span class="c1">#   via the command:</span>
<span class="c1">#       pip install numpy</span>

<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">glob</span>

<span class="kn">import</span> <span class="nn">dlib</span>

<span class="c1"># In this example we are going to train a face detector based on the small</span>
<span class="c1"># faces dataset in the examples/faces directory.  This means you need to supply</span>
<span class="c1"># the path to this faces folder as a command line argument so we will know</span>
<span class="c1"># where it is.</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">sys</span><span class="o">.</span><span class="n">argv</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">2</span><span class="p">:</span>
    <span class="k">print</span><span class="p">(</span>
        <span class="s2">&quot;Give the path to the examples/faces directory as the argument to this &quot;</span>
        <span class="s2">&quot;program. For example, if you are in the python_examples folder then &quot;</span>
        <span class="s2">&quot;execute this program by running:</span><span class="se">\n</span><span class="s2">&quot;</span>
        <span class="s2">&quot;    ./<a href="train_shape_predictor.py.html">train_shape_predictor.py</a> ../examples/faces&quot;</span><span class="p">)</span>
    <span class="nb">exit</span><span class="p">()</span>
<span class="n">faces_folder</span> <span class="o">=</span> <span class="n">sys</span><span class="o">.</span><span class="n">argv</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>

<span class="n">options</span> <span class="o">=</span> <span class="n">dlib</span><span class="o">.</span><span class="n">shape_predictor_training_options</span><span class="p">()</span>
<span class="c1"># Now make the object responsible for training the model.</span>
<span class="c1"># This algorithm has a bunch of parameters you can mess with.  The</span>
<span class="c1"># documentation for the shape_predictor_trainer explains all of them.</span>
<span class="c1"># You should also read Kazemi&#39;s paper which explains all the parameters</span>
<span class="c1"># in great detail.  However, here I&#39;m just setting three of them</span>
<span class="c1"># differently than their default values.  I&#39;m doing this because we</span>
<span class="c1"># have a very small dataset.  In particular, setting the oversampling</span>
<span class="c1"># to a high amount (300) effectively boosts the training set size, so</span>
<span class="c1"># that helps this example.</span>
<span class="n">options</span><span class="o">.</span><span class="n">oversampling_amount</span> <span class="o">=</span> <span class="mi">300</span>
<span class="c1"># I&#39;m also reducing the capacity of the model by explicitly increasing</span>
<span class="c1"># the regularization (making nu smaller) and by using trees with</span>
<span class="c1"># smaller depths.</span>
<span class="n">options</span><span class="o">.</span><span class="n">nu</span> <span class="o">=</span> <span class="mf">0.05</span>
<span class="n">options</span><span class="o">.</span><span class="n">tree_depth</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">options</span><span class="o">.</span><span class="n">be_verbose</span> <span class="o">=</span> <span class="bp">True</span>

<span class="c1"># dlib.train_shape_predictor() does the actual training.  It will save the</span>
<span class="c1"># final predictor to predictor.dat.  The input is an XML file that lists the</span>
<span class="c1"># images in the training dataset and also contains the positions of the face</span>
<span class="c1"># parts.</span>
<span class="n">training_xml_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">faces_folder</span><span class="p">,</span> <span class="s2">&quot;training_with_face_landmarks.xml&quot;</span><span class="p">)</span>
<span class="n">dlib</span><span class="o">.</span><span class="n">train_shape_predictor</span><span class="p">(</span><span class="n">training_xml_path</span><span class="p">,</span> <span class="s2">&quot;predictor.dat&quot;</span><span class="p">,</span> <span class="n">options</span><span class="p">)</span>

<span class="c1"># Now that we have a model we can test it.  dlib.test_shape_predictor()</span>
<span class="c1"># measures the average distance between a face landmark output by the</span>
<span class="c1"># shape_predictor and where it should be according to the truth data.</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\n</span><span class="s2">Training accuracy: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
    <span class="n">dlib</span><span class="o">.</span><span class="n">test_shape_predictor</span><span class="p">(</span><span class="n">training_xml_path</span><span class="p">,</span> <span class="s2">&quot;predictor.dat&quot;</span><span class="p">)))</span>
<span class="c1"># The real test is to see how well it does on data it wasn&#39;t trained on.  We</span>
<span class="c1"># trained it on a very small dataset so the accuracy is not extremely high, but</span>
<span class="c1"># it&#39;s still doing quite good.  Moreover, if you train it on one of the large</span>
<span class="c1"># face landmarking datasets you will obtain state-of-the-art results, as shown</span>
<span class="c1"># in the Kazemi paper.</span>
<span class="n">testing_xml_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">faces_folder</span><span class="p">,</span> <span class="s2">&quot;testing_with_face_landmarks.xml&quot;</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Testing accuracy: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
    <span class="n">dlib</span><span class="o">.</span><span class="n">test_shape_predictor</span><span class="p">(</span><span class="n">testing_xml_path</span><span class="p">,</span> <span class="s2">&quot;predictor.dat&quot;</span><span class="p">)))</span>

<span class="c1"># Now let&#39;s use it as you would in a normal application.  First we will load it</span>
<span class="c1"># from disk. We also need to load a face detector to provide the initial</span>
<span class="c1"># estimate of the facial location.</span>
<span class="n">predictor</span> <span class="o">=</span> <span class="n">dlib</span><span class="o">.</span><span class="n">shape_predictor</span><span class="p">(</span><span class="s2">&quot;predictor.dat&quot;</span><span class="p">)</span>
<span class="n">detector</span> <span class="o">=</span> <span class="n">dlib</span><span class="o">.</span><span class="n">get_frontal_face_detector</span><span class="p">()</span>

<span class="c1"># Now let&#39;s run the detector and shape_predictor over the images in the faces</span>
<span class="c1"># folder and display the results.</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Showing detections and predictions on the images in the faces folder...&quot;</span><span class="p">)</span>
<span class="n">win</span> <span class="o">=</span> <span class="n">dlib</span><span class="o">.</span><span class="n">image_window</span><span class="p">()</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">glob</span><span class="o">.</span><span class="n">glob</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">faces_folder</span><span class="p">,</span> <span class="s2">&quot;*.jpg&quot;</span><span class="p">)):</span>
    <span class="k">print</span><span class="p">(</span><span class="s2">&quot;Processing file: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">f</span><span class="p">))</span>
    <span class="n">img</span> <span class="o">=</span> <span class="n">dlib</span><span class="o">.</span><span class="n">load_rgb_image</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>

    <span class="n">win</span><span class="o">.</span><span class="n">clear_overlay</span><span class="p">()</span>
    <span class="n">win</span><span class="o">.</span><span class="n">set_image</span><span class="p">(</span><span class="n">img</span><span class="p">)</span>

    <span class="c1"># Ask the detector to find the bounding boxes of each face. The 1 in the</span>
    <span class="c1"># second argument indicates that we should upsample the image 1 time. This</span>
    <span class="c1"># will make everything bigger and allow us to detect more faces.</span>
    <span class="n">dets</span> <span class="o">=</span> <span class="n">detector</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
    <span class="k">print</span><span class="p">(</span><span class="s2">&quot;Number of faces detected: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">dets</span><span class="p">)))</span>
    <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">dets</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s2">&quot;Detection {}: Left: {} Top: {} Right: {} Bottom: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
            <span class="n">k</span><span class="p">,</span> <span class="n">d</span><span class="o">.</span><span class="n">left</span><span class="p">(),</span> <span class="n">d</span><span class="o">.</span><span class="n">top</span><span class="p">(),</span> <span class="n">d</span><span class="o">.</span><span class="n">right</span><span class="p">(),</span> <span class="n">d</span><span class="o">.</span><span class="n">bottom</span><span class="p">()))</span>
        <span class="c1"># Get the landmarks/parts for the face in box d.</span>
        <span class="n">shape</span> <span class="o">=</span> <span class="n">predictor</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span>
        <span class="k">print</span><span class="p">(</span><span class="s2">&quot;Part 0: {}, Part 1: {} ...&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">shape</span><span class="o">.</span><span class="n">part</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
                                                  <span class="n">shape</span><span class="o">.</span><span class="n">part</span><span class="p">(</span><span class="mi">1</span><span class="p">)))</span>
        <span class="c1"># Draw the face landmarks on the screen.</span>
        <span class="n">win</span><span class="o">.</span><span class="n">add_overlay</span><span class="p">(</span><span class="n">shape</span><span class="p">)</span>

    <span class="n">win</span><span class="o">.</span><span class="n">add_overlay</span><span class="p">(</span><span class="n">dets</span><span class="p">)</span>
    <span class="n">dlib</span><span class="o">.</span><span class="n">hit_enter_to_continue</span><span class="p">()</span>
</pre></div>
</body>
</html>