// Copyright (C) 2018 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_AUTO_LEARnING_ABSTRACT_Hh_ #ifdef DLIB_AUTO_LEARnING_ABSTRACT_Hh_ #include "kernel_abstract.h" #include "function_abstract.h" #include <chrono> #include <vector> namespace dlib { normalized_function<decision_function<radial_basis_kernel<matrix<double,0,1>>>> auto_train_rbf_classifier ( std::vector<matrix<double,0,1>> x, std::vector<double> y, const std::chrono::nanoseconds max_runtime, bool be_verbose = true ); /*! requires - is_binary_classification_problem(x,y) == true - y contains at least 6 examples of each class. ensures - This routine trains a radial basis function SVM on the given binary classification training data. It uses the svm_c_trainer to do this. It also uses find_max_global() and 6-fold cross-validation to automatically determine the best settings of the SVM's hyper parameters. - The hyperparameter search will run for about max_runtime and will print messages to the screen as it runs if be_verbose==true. !*/ } #endif // DLIB_AUTO_LEARnING_ABSTRACT_Hh_