// Copyright (C) 2015 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_DNN_CuDNN_CPP_ #define DLIB_DNN_CuDNN_CPP_ #ifdef DLIB_USE_CUDA #include "cudnn_dlibapi.h" #include "tensor.h" #include <cudnn.h> #include <tuple> #include <map> #include <iostream> #include <string> #include <vector> #include "cuda_utils.h" #include "cpu_dlib.h" #include "cuda_dlib.h" #include "tensor_tools.h" static const char* cudnn_get_error_string(cudnnStatus_t s) { switch(s) { case CUDNN_STATUS_NOT_INITIALIZED: return "CUDA Runtime API initialization failed."; case CUDNN_STATUS_ALLOC_FAILED: return "CUDA Resources could not be allocated."; case CUDNN_STATUS_BAD_PARAM: return "CUDNN_STATUS_BAD_PARAM"; case CUDNN_STATUS_EXECUTION_FAILED: return "CUDNN_STATUS_EXECUTION_FAILED"; case CUDNN_STATUS_NOT_SUPPORTED: return "CUDNN_STATUS_NOT_SUPPORTED"; case CUDNN_STATUS_ARCH_MISMATCH: return "CUDNN_STATUS_ARCH_MISMATCH: Your GPU is too old and not supported by cuDNN"; default: return "A call to cuDNN failed"; } } // Check the return value of a call to the cuDNN runtime for an error condition. #define CHECK_CUDNN(call) \ do{ \ const cudnnStatus_t error = call; \ if (error != CUDNN_STATUS_SUCCESS) \ { \ std::ostringstream sout; \ sout << "Error while calling " << #call << " in file " << __FILE__ << ":" << __LINE__ << ". ";\ sout << "code: " << error << ", reason: " << cudnn_get_error_string(error);\ throw dlib::cudnn_error(sout.str()); \ } \ }while(false) namespace dlib { namespace cuda { // ------------------------------------------------------------------------------------ static cudnnTensorDescriptor_t descriptor(const tensor& t) { return (const cudnnTensorDescriptor_t)t.get_cudnn_tensor_descriptor().get_handle(); } static cudnnTensorDescriptor_t descriptor(const tensor_descriptor& t) { return (const cudnnTensorDescriptor_t)t.get_handle(); } // ------------------------------------------------------------------------------------ class cudnn_context { public: // not copyable cudnn_context(const cudnn_context&) = delete; cudnn_context& operator=(const cudnn_context&) = delete; cudnn_context() { handles.resize(16); } ~cudnn_context() { for (auto h : handles) { if (h) cudnnDestroy(h); } } cudnnHandle_t get_handle ( ) { int new_device_id; CHECK_CUDA(cudaGetDevice(&new_device_id)); // make room for more devices if needed if (new_device_id >= (long)handles.size()) handles.resize(new_device_id+16); // If we don't have a handle already for this device then make one if (!handles[new_device_id]) CHECK_CUDNN(cudnnCreate(&handles[new_device_id])); // Finally, return the handle for the current device return handles[new_device_id]; } private: std::vector<cudnnHandle_t> handles; }; static cudnnHandle_t context() { thread_local cudnn_context c; return c.get_handle(); } // ------------------------------------------------------------------------------------ class cudnn_activation_descriptor { public: // not copyable cudnn_activation_descriptor(const cudnn_activation_descriptor&) = delete; cudnn_activation_descriptor& operator=(const cudnn_activation_descriptor&) = delete; cudnn_activation_descriptor( cudnnActivationMode_t mode, cudnnNanPropagation_t reluNanOpt, double reluCeiling ) { CHECK_CUDNN(cudnnCreateActivationDescriptor(&handle)); CHECK_CUDNN(cudnnSetActivationDescriptor(handle, mode, reluNanOpt, reluCeiling)); } ~cudnn_activation_descriptor() { cudnnDestroyActivationDescriptor(handle); } cudnnActivationDescriptor_t get_handle ( ) { return handle; } private: cudnnActivationDescriptor_t handle; }; static cudnnActivationDescriptor_t relu_activation_descriptor() { thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_RELU, CUDNN_PROPAGATE_NAN,0); return des.get_handle(); } static cudnnActivationDescriptor_t sigmoid_activation_descriptor() { thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_SIGMOID, CUDNN_PROPAGATE_NAN,0); return des.get_handle(); } static cudnnActivationDescriptor_t tanh_activation_descriptor() { thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_TANH, CUDNN_PROPAGATE_NAN,0); return des.get_handle(); } // ------------------------------------------------------------------------------------ tensor_descriptor:: tensor_descriptor( ) : handle(nullptr) { } tensor_descriptor:: ~tensor_descriptor() { set_size(0,0,0,0); } void tensor_descriptor:: set_size( int n, int k, int nr, int nc ) { if (handle) { cudnnDestroyTensorDescriptor((cudnnTensorDescriptor_t)handle); handle = nullptr; } if (n != 0 && nr != 0 && nc != 0 && k != 0) { cudnnTensorDescriptor_t h; CHECK_CUDNN(cudnnCreateTensorDescriptor(&h)); handle = h; CHECK_CUDNN(cudnnSetTensor4dDescriptor((cudnnTensorDescriptor_t)handle, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, k, nr, nc)); } } void tensor_descriptor:: get_size ( int& n, int& k, int& nr, int& nc ) const { if (handle) { int nStride, cStride, hStride, wStride; cudnnDataType_t datatype; CHECK_CUDNN(cudnnGetTensor4dDescriptor((cudnnTensorDescriptor_t)handle, &datatype, &n, &k, &nr, &nc, &nStride, &cStride, &hStride, &wStride)); } else { n = 0; k = 0; nr = 0; nc = 0; } } // ------------------------------------------------------------------------------------ void add( float beta, tensor& dest, float alpha, const tensor& src ) { DLIB_CASSERT( (have_same_dimensions(src, dest) || (src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1) || (src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()) || (src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()) || (src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1)) && is_same_object(src,dest) == false , "\n\t dest.num_samples(): " << dest.num_samples() <<"\n\t dest.k(): " << dest.k() <<"\n\t dest.nr(): " << dest.nr() <<"\n\t dest.nc(): " << dest.nc() <<"\n\t src.num_samples(): " << src.num_samples() <<"\n\t src.k(): " << src.k() <<"\n\t src.nr(): " << src.nr() <<"\n\t src.nc(): " << src.nc() ); if (dest.size() == src.size() && beta == 1) { // Call the dlib function in this case since it's faster than the one that // comes with cuDNN (at least as of cuDNN v4). add_scaled(dest, alpha, src); return; } else if (src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1) { add_cv_to_all_columns(beta, dest, alpha, src); return; } CHECK_CUDNN(cudnnAddTensor(context(), &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void assign_conv_bias_gradient ( tensor& grad, const tensor& gradient_input ) { DLIB_CASSERT( grad.num_samples() == 1 && grad.k() >= 1 && grad.nr() == 1 && grad.nc() == 1 && gradient_input.k() == grad.k() && gradient_input.size() > 0 && is_same_object(grad,gradient_input) == false ); const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnConvolutionBackwardBias(context(), &alpha, descriptor(gradient_input), gradient_input.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ void batch_normalize_inference ( const double eps, resizable_tensor& dest, const tensor& src, const tensor& gamma, const tensor& beta, const tensor& running_means, const tensor& running_variances ) { DLIB_CASSERT( gamma.num_samples() == 1 && gamma.nr() == src.nr() && gamma.nc() == src.nc() && gamma.k() == src.k() && have_same_dimensions(gamma, beta) && have_same_dimensions(gamma, running_means) && have_same_dimensions(gamma, running_variances) && eps > 0, "\ngamma.num_samples(): " << gamma.num_samples() << "\ngamma.k(): " << gamma.k() << "\ngamma.nr(): " << gamma.nr() << "\ngamma.nc(): " << gamma.nc() << "\nbeta.num_samples(): " << beta.num_samples() << "\nbeta.k(): " << beta.k() << "\nbeta.nr(): " << beta.nr() << "\nbeta.nc(): " << beta.nc() << "\nrunning_means.num_samples(): " << running_means.num_samples() << "\nrunning_means.k(): " << running_means.k() << "\nrunning_means.nr(): " << running_means.nr() << "\nrunning_means.nc(): " << running_means.nc() << "\nrunning_variances.num_samples(): " << running_variances.num_samples() << "\nrunning_variances.k(): " << running_variances.k() << "\nrunning_variances.nr(): " << running_variances.nr() << "\nrunning_variances.nc(): " << running_variances.nc() << "\nsrc.k(): " << src.k() << "\nsrc.nr(): " << src.nr() << "\nsrc.nc(): " << src.nc() << "\neps: " << eps ); const float in_scale = 1; const float out_scale = 0; dest.copy_size(src); CHECK_CUDNN(cudnnBatchNormalizationForwardInference( context(), CUDNN_BATCHNORM_PER_ACTIVATION, &in_scale, &out_scale, descriptor(src), src.device(), descriptor(dest), dest.device(), descriptor(gamma), gamma.device(), beta.device(), running_means.device(), running_variances.device(), eps)); } void batch_normalize ( const double eps, resizable_tensor& dest, resizable_tensor& means, resizable_tensor& invstds, const double averaging_factor, resizable_tensor& running_means, resizable_tensor& running_variances, const tensor& src, const tensor& gamma, const tensor& beta ) { DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor); DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means)); DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds)); DLIB_CASSERT( src.num_samples() > 1 && gamma.num_samples() == 1 && beta.num_samples() == 1 && gamma.nr() == beta.nr() && beta.nr() == src.nr() && gamma.nc() == beta.nc() && beta.nc() == src.nc() && gamma.k() == beta.k() && beta.k() == src.k() && eps > 0, "\ngamma.num_samples(): " << gamma.num_samples() << "\ngamma.k(): " << gamma.k() << "\ngamma.nr(): " << gamma.nr() << "\ngamma.nc(): " << gamma.nc() << "\nbeta.num_samples(): " << beta.num_samples() << "\nbeta.k(): " << beta.k() << "\nbeta.nr(): " << beta.nr() << "\nbeta.nc(): " << beta.nc() << "\nsrc.k(): " << src.k() << "\nsrc.nr(): " << src.nr() << "\nsrc.nc(): " << src.nc() << "\neps: " << eps ); const float in_scale = 1; const float out_scale = 0; dest.copy_size(src); means.set_size(1, src.k(), src.nr(), src.nc()); invstds.copy_size(means); running_means.copy_size(means); running_variances.copy_size(means); // cuDNN requires that running_means and running_variances be initialized to // some valid float values even if the averaging factor would have ignored // them. if (averaging_factor == 1) { running_means = 0; running_variances = 1; } CHECK_CUDNN(cudnnBatchNormalizationForwardTraining( context(), CUDNN_BATCHNORM_PER_ACTIVATION, &in_scale, &out_scale, descriptor(src), src.device(), descriptor(dest), dest.device(), descriptor(gamma), gamma.device(), beta.device(), averaging_factor, running_means.device(), running_variances.device(), eps, means.device(), invstds.device())); } void batch_normalize_gradient( const double eps, const tensor& gradient_input, const tensor& means, const tensor& invstds, const tensor& src, const tensor& gamma, tensor& src_grad, tensor& gamma_grad, tensor& beta_grad ) { const long num = src.k()*src.nr()*src.nc(); DLIB_CASSERT(src.num_samples() > 1); DLIB_CASSERT(num == (long)means.size()); DLIB_CASSERT(num == (long)invstds.size()); DLIB_CASSERT(num == (long)gamma.size()); DLIB_CASSERT(num == (long)gamma_grad.size()); DLIB_CASSERT(num == (long)beta_grad.size()); DLIB_CASSERT(have_same_dimensions(gradient_input, src)); DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad)); DLIB_CASSERT(eps > 0); const float in_scale = 1; const float out_scale = 1; const float in_scale_params = 1; const float out_scale_params = 0; CHECK_CUDNN(cudnnBatchNormalizationBackward( context(), CUDNN_BATCHNORM_PER_ACTIVATION, &in_scale, &out_scale, &in_scale_params, &out_scale_params, descriptor(src), src.device(), descriptor(gradient_input), gradient_input.device(), descriptor(src_grad), src_grad.device(), descriptor(gamma), gamma.device(), gamma_grad.device(), beta_grad.device(), eps, means.device(), invstds.device())); } // ------------------------------------------------------------------------------------ void batch_normalize_conv_inference ( const double eps, resizable_tensor& dest, const tensor& src, const tensor& gamma, const tensor& beta, const tensor& running_means, const tensor& running_variances ) { DLIB_CASSERT( gamma.num_samples() == 1 && gamma.nr() == 1 && gamma.nc() == 1 && gamma.k() == src.k() && have_same_dimensions(gamma, beta) && have_same_dimensions(gamma, running_means) && have_same_dimensions(gamma, running_variances) && eps > 0, "\ngamma.num_samples(): " << gamma.num_samples() << "\ngamma.k(): " << gamma.k() << "\ngamma.nr(): " << gamma.nr() << "\ngamma.nc(): " << gamma.nc() << "\nbeta.num_samples(): " << beta.num_samples() << "\nbeta.k(): " << beta.k() << "\nbeta.nr(): " << beta.nr() << "\nbeta.nc(): " << beta.nc() << "\nrunning_means.num_samples(): " << running_means.num_samples() << "\nrunning_means.k(): " << running_means.k() << "\nrunning_means.nr(): " << running_means.nr() << "\nrunning_means.nc(): " << running_means.nc() << "\nrunning_variances.num_samples(): " << running_variances.num_samples() << "\nrunning_variances.k(): " << running_variances.k() << "\nrunning_variances.nr(): " << running_variances.nr() << "\nrunning_variances.nc(): " << running_variances.nc() << "\nsrc.k(): " << src.k() << "\nsrc.nr(): " << src.nr() << "\nsrc.nc(): " << src.nc() << "\neps: " << eps ); const float in_scale = 1; const float out_scale = 0; dest.copy_size(src); CHECK_CUDNN(cudnnBatchNormalizationForwardInference( context(), CUDNN_BATCHNORM_SPATIAL, &in_scale, &out_scale, descriptor(src), src.device(), descriptor(dest), dest.device(), descriptor(gamma), gamma.device(), beta.device(), running_means.device(), running_variances.device(), eps)); } void batch_normalize_conv ( const double eps, resizable_tensor& dest, resizable_tensor& means, resizable_tensor& invstds, const double averaging_factor, resizable_tensor& running_means, resizable_tensor& running_variances, const tensor& src, const tensor& gamma, const tensor& beta ) { DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor); DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means)); DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds)); DLIB_CASSERT( src.num_samples() > 1 && gamma.num_samples() == 1 && beta.num_samples() == 1 && gamma.nr() == 1 && beta.nr() == 1 && gamma.nc() == 1 && beta.nc() == 1 && gamma.k() == beta.k() && beta.k() == src.k() && eps > 0, "\ngamma.num_samples(): " << gamma.num_samples() << "\ngamma.k(): " << gamma.k() << "\ngamma.nr(): " << gamma.nr() << "\ngamma.nc(): " << gamma.nc() << "\nbeta.num_samples(): " << beta.num_samples() << "\nbeta.k(): " << beta.k() << "\nbeta.nr(): " << beta.nr() << "\nbeta.nc(): " << beta.nc() << "\nsrc.k(): " << src.k() << "\nsrc.nr(): " << src.nr() << "\nsrc.nc(): " << src.nc() << "\neps: " << eps ); const float in_scale = 1; const float out_scale = 0; dest.copy_size(src); means.set_size(1, src.k()); invstds.copy_size(means); running_means.copy_size(means); running_variances.copy_size(means); // cuDNN requires that running_means and running_variances be initialized to // some valid float values even if the averaging factor would have ignored // them. if (averaging_factor == 1) { running_means = 0; running_variances = 1; } CHECK_CUDNN(cudnnBatchNormalizationForwardTraining( context(), CUDNN_BATCHNORM_SPATIAL, &in_scale, &out_scale, descriptor(src), src.device(), descriptor(dest), dest.device(), descriptor(gamma), gamma.device(), beta.device(), averaging_factor, running_means.device(), running_variances.device(), eps, means.device(), invstds.device())); } void batch_normalize_conv_gradient( const double eps, const tensor& gradient_input, const tensor& means, const tensor& invstds, const tensor& src, const tensor& gamma, tensor& src_grad, tensor& gamma_grad, tensor& beta_grad ) { DLIB_CASSERT(src.k() == (long)means.size()); DLIB_CASSERT(src.k() == (long)invstds.size()); DLIB_CASSERT(src.k() == (long)gamma.size()); DLIB_CASSERT(src.k() == (long)gamma_grad.size()); DLIB_CASSERT(src.k() == (long)beta_grad.size()); DLIB_CASSERT(have_same_dimensions(gradient_input, src)); DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad)); DLIB_CASSERT(eps > 0); const float in_scale = 1; const float out_scale = 1; const float in_scale_params = 1; const float out_scale_params = 0; CHECK_CUDNN(cudnnBatchNormalizationBackward( context(), CUDNN_BATCHNORM_SPATIAL, &in_scale, &out_scale, &in_scale_params, &out_scale_params, descriptor(src), src.device(), descriptor(gradient_input), gradient_input.device(), descriptor(src_grad), src_grad.device(), descriptor(gamma), gamma.device(), gamma_grad.device(), beta_grad.device(), eps, means.device(), invstds.device())); } // ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------ tensor_conv:: tensor_conv( ) : filter_handle(nullptr), conv_handle(nullptr), forward_algo(0), backward_data_algo(0), backward_filters_algo(0) { clear(); } void tensor_conv:: clear ( ) { if (filter_handle) cudnnDestroyFilterDescriptor((cudnnFilterDescriptor_t)filter_handle); if (conv_handle) cudnnDestroyConvolutionDescriptor((cudnnConvolutionDescriptor_t)conv_handle); filter_handle = nullptr; conv_handle = nullptr; out_num_samples = 0; out_k = 0; out_nr = 0; out_nc = 0; stride_y = 0; stride_x = 0; padding_y = 0; padding_x = 0; data_num_samples = 0; data_k = 0; data_nr = 0; data_nc = 0; filters_num_samples = 0; filters_k = 0; filters_nr = 0; filters_nc = 0; forward_algo = 0; backward_data_algo = 0; backward_filters_algo = 0; forward_workspace_size_in_bytes = 0; backward_data_workspace_size_in_bytes = 0; backward_filters_workspace_size_in_bytes = 0; forward_workspace.reset(); backward_data_workspace.reset(); backward_filters_workspace.reset(); } // Given an array of cudnn algorithm performance results, like // cudnnConvolutionFwdAlgoPerf_t, pick the best one to use. template <typename T> decltype(std::declval<T>().algo) pick_best_algorithm(const std::vector<T> &perf_results) { DLIB_CASSERT(!perf_results.empty()); CHECK_CUDNN(perf_results[0].status); if (dnn_prefer_fastest_algorithms()) return perf_results[0].algo; // Otherwise we find the algorithm that has a good status and uses the least amount // of memory. size_t best_memory = std::numeric_limits<size_t>::max(); decltype(std::declval<T>().algo) best_alg; for (auto&& perf : perf_results) { if (perf.status == CUDNN_STATUS_SUCCESS && perf.memory < best_memory) { best_memory = perf.memory; best_alg = perf.algo; } } return best_alg; } void tensor_conv:: select_best_algorithms ( const tensor& data, const tensor_descriptor& dest_desc ) { // Calling the cuDNN "find the best algorithm" functions are really slow. So we keep a // cache that tells us what method was best for a particular configuration. thread_local std::map<std::tuple<int,int,int,int,long,long>, std::tuple<int,int,int>> config_to_algo_cache; // If we have already found good algorithms for this setting then just pull them from // the cache. const auto cache_key = std::make_tuple(stride_y, stride_x, padding_y, padding_x, filters_nr, filters_nc); const auto iter = config_to_algo_cache.find(cache_key); if (iter != config_to_algo_cache.end()) { std::tie(forward_algo, backward_data_algo, backward_filters_algo) = iter->second; return; } // Pick which forward algorithm we will use and allocate the necessary // workspace buffer. cudnnConvolutionFwdAlgo_t forward_best_algo; #if CUDNN_MAJOR >= 8 { int num_possible_algorithms = 0; CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(context(), &num_possible_algorithms)); std::vector<cudnnConvolutionFwdAlgoPerf_t> perf_results(num_possible_algorithms); int num_algorithms = 0; CHECK_CUDNN(cudnnFindConvolutionForwardAlgorithm( context(), descriptor(data), (const cudnnFilterDescriptor_t)filter_handle, (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(dest_desc), num_possible_algorithms, &num_algorithms, perf_results.data())); perf_results.resize(num_algorithms); forward_best_algo = pick_best_algorithm(perf_results); } #else CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm( context(), descriptor(data), (const cudnnFilterDescriptor_t)filter_handle, (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(dest_desc), dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_FWD_PREFER_FASTEST:CUDNN_CONVOLUTION_FWD_NO_WORKSPACE, std::numeric_limits<size_t>::max(), &forward_best_algo)); #endif forward_algo = forward_best_algo; // Pick which backward data algorithm we will use and allocate the // necessary workspace buffer. cudnnConvolutionBwdDataAlgo_t backward_data_best_algo; #if CUDNN_MAJOR >= 8 { int num_possible_algorithms = 0; CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(context(), &num_possible_algorithms)); std::vector<cudnnConvolutionBwdDataAlgoPerf_t> perf_results(num_possible_algorithms); int num_algorithms = 0; CHECK_CUDNN(cudnnFindConvolutionBackwardDataAlgorithm( context(), (const cudnnFilterDescriptor_t)filter_handle, descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(data), num_possible_algorithms, &num_algorithms, perf_results.data())); perf_results.resize(num_algorithms); backward_data_best_algo = pick_best_algorithm(perf_results); } #else CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm( context(), (const cudnnFilterDescriptor_t)filter_handle, descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(data), dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST:CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE, std::numeric_limits<size_t>::max(), &backward_data_best_algo)); #endif backward_data_algo = backward_data_best_algo; // Pick which backward filters algorithm we will use and allocate the // necessary workspace buffer. cudnnConvolutionBwdFilterAlgo_t backward_filters_best_algo; #if CUDNN_MAJOR >= 8 { int num_possible_algorithms = 0; CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(context(), &num_possible_algorithms)); std::vector<cudnnConvolutionBwdFilterAlgoPerf_t> perf_results(num_possible_algorithms); int num_algorithms = 0; CHECK_CUDNN(cudnnFindConvolutionBackwardFilterAlgorithm( context(), descriptor(data), descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, (const cudnnFilterDescriptor_t)filter_handle, num_possible_algorithms, &num_algorithms, perf_results.data())); perf_results.resize(num_algorithms); backward_filters_best_algo = pick_best_algorithm(perf_results); } #else CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm( context(), descriptor(data), descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, (const cudnnFilterDescriptor_t)filter_handle, dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST:CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE, std::numeric_limits<size_t>::max(), &backward_filters_best_algo)); #endif // cuDNN 5.1 has a bug that causes // cudnnGetConvolutionBackwardFilterAlgorithm() to pick the winograd // algorithm even for cases where cuDNN doesn't support it, leading to // incorrect outputs. So here we check if we are in a case where winograd // isn't supported and manually overrule // cudnnGetConvolutionBackwardFilterAlgorithm() by picking a safe // algorithm. if (dnn_prefer_fastest_algorithms() && !(stride_x == 1 && stride_y == 1 && ((filters_nr==3&&filters_nc==3) || (filters_nr==5&&filters_nc==5))) ) { backward_filters_best_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0; } backward_filters_algo = backward_filters_best_algo; // Save this algorithm selection in the cache config_to_algo_cache[cache_key] = std::make_tuple(forward_algo, backward_data_algo, backward_filters_algo); } void tensor_conv:: setup( const tensor& data, const tensor& filters, int stride_y_, int stride_x_, int padding_y_, int padding_x_ ) { DLIB_CASSERT(data.k() == filters.k()); // if the last call to setup gave the same exact settings then don't do // anything. if (data_num_samples == data.num_samples() && data_k == data.k() && data_nr == data.nr() && data_nc == data.nc() && stride_y_ == stride_y && stride_x_ == stride_x && padding_y_ == padding_y && padding_x_ == padding_x && filters_num_samples == filters.num_samples() && filters_k == filters.k() && filters_nr == filters.nr() && filters_nc == filters.nc() ) { return; } clear(); try { stride_y = stride_y_; stride_x = stride_x_; padding_y = padding_y_; padding_x = padding_x_; data_num_samples = data.num_samples(); data_k = data.k(); data_nr = data.nr(); data_nc = data.nc(); filters_num_samples = filters.num_samples(); filters_k = filters.k(); filters_nr = filters.nr(); filters_nc = filters.nc(); CHECK_CUDNN(cudnnCreateFilterDescriptor((cudnnFilterDescriptor_t*)&filter_handle)); CHECK_CUDNN(cudnnSetFilter4dDescriptor((cudnnFilterDescriptor_t)filter_handle, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, filters.num_samples(), filters.k(), filters.nr(), filters.nc())); CHECK_CUDNN(cudnnCreateConvolutionDescriptor((cudnnConvolutionDescriptor_t*)&conv_handle)); #if CUDNN_MAJOR >= 6 CHECK_CUDNN(cudnnSetConvolution2dDescriptor((cudnnConvolutionDescriptor_t)conv_handle, padding_y, // vertical padding padding_x, // horizontal padding stride_y, stride_x, 1, 1, // must be 1,1 CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // could also be CUDNN_CONVOLUTION #else CHECK_CUDNN(cudnnSetConvolution2dDescriptor((cudnnConvolutionDescriptor_t)conv_handle, padding_y, // vertical padding padding_x, // horizontal padding stride_y, stride_x, 1, 1, // must be 1,1 CUDNN_CROSS_CORRELATION)); // could also be CUDNN_CONVOLUTION #endif CHECK_CUDNN(cudnnGetConvolution2dForwardOutputDim( (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(data), (const cudnnFilterDescriptor_t)filter_handle, &out_num_samples, &out_k, &out_nr, &out_nc)); tensor_descriptor dest_desc; dest_desc.set_size(out_num_samples,out_k,out_nr,out_nc); select_best_algorithms(data, dest_desc); CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize( context(), descriptor(data), (const cudnnFilterDescriptor_t)filter_handle, (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(dest_desc), (cudnnConvolutionFwdAlgo_t)forward_algo, &forward_workspace_size_in_bytes)); CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize( context(), (const cudnnFilterDescriptor_t)filter_handle, descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, descriptor(data), (cudnnConvolutionBwdDataAlgo_t)backward_data_algo, &backward_data_workspace_size_in_bytes)); CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize( context(), descriptor(data), descriptor(dest_desc), (const cudnnConvolutionDescriptor_t)conv_handle, (const cudnnFilterDescriptor_t)filter_handle, (cudnnConvolutionBwdFilterAlgo_t)backward_filters_algo, &backward_filters_workspace_size_in_bytes)); } catch(...) { clear(); throw; } } tensor_conv:: ~tensor_conv ( ) { clear(); } void tensor_conv::operator() ( const bool add_to_output, resizable_tensor& output, const tensor& data, const tensor& filters ) { DLIB_CASSERT(stride_y > 0 && stride_x > 0, "You must call setup() before calling this function"); output.set_size(out_num_samples, out_k, out_nr, out_nc); (*this)(add_to_output, static_cast<tensor&>(output), data, filters); } void tensor_conv::operator() ( const bool add_to_output, tensor& output, const tensor& data, const tensor& filters ) { DLIB_CASSERT(is_same_object(output,data) == false); DLIB_CASSERT(is_same_object(output,filters) == false); DLIB_CASSERT(filters.k() == data.k()); DLIB_CASSERT(stride_y > 0 && stride_x > 0, "You must call setup() before calling this function"); DLIB_CASSERT(filters.nc() <= data.nc() + 2*padding_x, "Filter windows must be small enough to fit into the padded image." << "\n\t filters.nc(): " << filters.nc() << "\n\t data.nc(): " << data.nc() << "\n\t padding_x: " << padding_x ); DLIB_CASSERT(filters.nr() <= data.nr() + 2*padding_y, "Filter windows must be small enough to fit into the padded image." << "\n\t filters.nr(): " << filters.nr() << "\n\t data.nr(): " << data.nr() << "\n\t padding_y: " << padding_y ); DLIB_CASSERT(output.num_samples() == data.num_samples(),out_num_samples << " " << data.num_samples()); DLIB_CASSERT(output.k() == filters.num_samples()); DLIB_CASSERT(output.nr() == 1+(data.nr()+2*padding_y-filters.nr())/stride_y); DLIB_CASSERT(output.nc() == 1+(data.nc()+2*padding_x-filters.nc())/stride_x); const float alpha = 1; const float beta = add_to_output ? 1 : 0; // Since cudnnConvolutionForward() is an asynchronous call, we need to hold a // reference to the workspace buffer so we can be sure it isn't reallocated // while the function is still executing on the device. But each time we come // here, we make sure to grab the latest workspace buffer so that, globally, we // minimize the number of such buffers. forward_workspace = device_global_buffer(forward_workspace_size_in_bytes); CHECK_CUDNN(cudnnConvolutionForward( context(), &alpha, descriptor(data), data.device(), (const cudnnFilterDescriptor_t)filter_handle, filters.device(), (const cudnnConvolutionDescriptor_t)conv_handle, (cudnnConvolutionFwdAlgo_t)forward_algo, forward_workspace, forward_workspace_size_in_bytes, &beta, descriptor(output), output.device())); } void tensor_conv::get_gradient_for_data ( const bool add_to_output, const tensor& gradient_input, const tensor& filters, tensor& data_gradient ) { const float alpha = 1; const float beta = add_to_output ? 1 : 0; // Since cudnnConvolutionBackwardData() is an asynchronous call, we need to hold a // reference to the workspace buffer so we can be sure it isn't reallocated // while the function is still executing on the device. But each time we come // here, we make sure to grab the latest workspace buffer so that, globally, we // minimize the number of such buffers. backward_data_workspace = device_global_buffer(backward_data_workspace_size_in_bytes); CHECK_CUDNN(cudnnConvolutionBackwardData(context(), &alpha, (const cudnnFilterDescriptor_t)filter_handle, filters.device(), descriptor(gradient_input), gradient_input.device(), (const cudnnConvolutionDescriptor_t)conv_handle, (cudnnConvolutionBwdDataAlgo_t)backward_data_algo, backward_data_workspace, backward_data_workspace_size_in_bytes, &beta, descriptor(data_gradient), data_gradient.device())); } void tensor_conv:: get_gradient_for_filters ( const bool add_to_output, const tensor& gradient_input, const tensor& data, tensor& filters_gradient ) { const float alpha = 1; const float beta = add_to_output ? 1 : 0; // Since cudnnConvolutionBackwardFilter() is an asynchronous call, we need to hold a // reference to the workspace buffer so we can be sure it isn't reallocated // while the function is still executing on the device. But each time we come // here, we make sure to grab the latest workspace buffer so that, globally, we // minimize the number of such buffers. backward_filters_workspace = device_global_buffer(backward_filters_workspace_size_in_bytes); CHECK_CUDNN(cudnnConvolutionBackwardFilter(context(), &alpha, descriptor(data), data.device(), descriptor(gradient_input), gradient_input.device(), (const cudnnConvolutionDescriptor_t)conv_handle, (cudnnConvolutionBwdFilterAlgo_t)backward_filters_algo, backward_filters_workspace, backward_filters_workspace_size_in_bytes, &beta, (const cudnnFilterDescriptor_t)filter_handle, filters_gradient.device())); } // ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------ pooling::pooling ( ) : handle(nullptr),window_height(0),window_width(0),stride_y(0),stride_x(0),padding_y(0), padding_x(0) { } pooling::~pooling( ) { clear(); } void pooling:: clear( ) { if (handle) cudnnDestroyPoolingDescriptor((cudnnPoolingDescriptor_t)handle); handle = nullptr; window_height = 0; window_width = 0; stride_y = 0; stride_x = 0; padding_y = 0; padding_x = 0; } void pooling:: setup_max_pooling( int window_height_, int window_width_, int stride_y_, int stride_x_, int padding_y_, int padding_x_ ) { setup(window_height_, window_width_, stride_y_, stride_x_, padding_y_, padding_x_, CUDNN_POOLING_MAX); do_max_pooling = true; } void pooling:: setup_avg_pooling( int window_height_, int window_width_, int stride_y_, int stride_x_, int padding_y_, int padding_x_ ) { setup(window_height_, window_width_, stride_y_, stride_x_, padding_y_, padding_x_, CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING); do_max_pooling = false; } void pooling:: setup( int window_height_, int window_width_, int stride_y_, int stride_x_, int padding_y_, int padding_x_, int pooling_mode ) { DLIB_CASSERT (window_height_ > 0 && window_width_ > 0 && stride_y_ > 0 && stride_x_ > 0 , "window_height_: " << window_height_ << "\t\n window_width_: " << window_width_ << "\t\n stride_y_: " << stride_y_ << "\t\n stride_x_: " << stride_x_ ); DLIB_CASSERT( 0 <= padding_y_ && padding_y_ < window_height_ && 0 <= padding_x_ && padding_x_ < window_width_, "window_height_: " << window_height_ << "\t\n window_width_: " << window_width_ << "\t\n padding_y_: " << padding_y_ << "\t\n padding_x_: " << padding_x_ ); if (window_height == window_height_ && window_width == window_width_ && stride_y == stride_y_ && stride_x == stride_x_ && padding_y == padding_y_ && padding_x == padding_x_ ) { return; } clear(); try { window_height = window_height_; window_width = window_width_; stride_x = stride_x_; stride_y = stride_y_; padding_y = padding_y_; padding_x = padding_x_; cudnnPoolingDescriptor_t poolingDesc; CHECK_CUDNN(cudnnCreatePoolingDescriptor(&poolingDesc)); handle = poolingDesc; CHECK_CUDNN(cudnnSetPooling2dDescriptor(poolingDesc, (cudnnPoolingMode_t)pooling_mode, CUDNN_PROPAGATE_NAN, window_height, window_width, padding_y, padding_x, stride_y, stride_x)); } catch(...) { clear(); throw; } } void pooling:: operator() ( resizable_tensor& dest, const tensor& src ) { DLIB_CASSERT(window_width <= src.nc() + 2*padding_x, "Pooling windows must be small enough to fit into the padded image." << "\n\t window_width: " << window_width << "\n\t src.nc(): " << src.nc() << "\n\t padding_x: " << padding_x ); DLIB_CASSERT(window_height <= src.nr() + 2*padding_y, "Pooling windows must be small enough to fit into the padded image." << "\n\t window_height: " << window_height << "\n\t src.nr(): " << src.nr() << "\n\t padding_y: " << padding_y ); const float alpha = 1; const float beta = 0; int outN; int outC; int outH; int outW; CHECK_CUDNN(cudnnGetPooling2dForwardOutputDim((const cudnnPoolingDescriptor_t)handle, descriptor(src), &outN, &outC, &outH, &outW)); dest.set_size(outN,outC,outH,outW); DLIB_CASSERT(dest.num_samples() == src.num_samples()); DLIB_CASSERT(dest.k() == src.k()); DLIB_CASSERT(dest.nr() == 1 + (src.nr() + 2*padding_y - window_height)/stride_y, "\n stride_y: " << stride_y << "\n padding_y: " << padding_y << "\n window_height: " << window_height << "\n src.nr(): " << src.nr() << "\n dest.nr(): " << dest.nr() << "\n src.nr()/stride_y: " << src.nr()/stride_y); DLIB_CASSERT(dest.nc() == 1 + (src.nc() + 2*padding_x - window_width)/stride_x, "\n stride_x: " << stride_x << "\n padding_x: " << padding_x << "\n window_width: " << window_width << "\n src.nc(): " << src.nc() << "\n dest.nc(): " << dest.nc() << "\n src.nc()/stride_x: " << src.nc()/stride_x); CHECK_CUDNN(cudnnPoolingForward(context(), (const cudnnPoolingDescriptor_t)handle, &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void pooling::get_gradient( const tensor& gradient_input, const tensor& dest, const tensor& src, tensor& grad ) { DLIB_CASSERT(have_same_dimensions(gradient_input,dest)); DLIB_CASSERT(have_same_dimensions(src,grad)); const float alpha = 1; const float beta = 1; CHECK_CUDNN(cudnnPoolingBackward(context(), (const cudnnPoolingDescriptor_t)handle, &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), descriptor(src), src.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------ void softmax ( tensor& dest, const tensor& src ) { DLIB_CASSERT(have_same_dimensions(dest,src)); if (src.size() == 0) return; const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnSoftmaxForward(context(), CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_CHANNEL, &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void softmax_gradient ( tensor& grad, const tensor& dest, const tensor& gradient_input ) { DLIB_CASSERT( have_same_dimensions(dest,gradient_input) == true && have_same_dimensions(dest,grad) == true ); if (dest.size() == 0) return; const float alpha = 1; const float beta = is_same_object(grad,gradient_input) ? 0 : 1; CHECK_CUDNN(cudnnSoftmaxBackward(context(), CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_CHANNEL, &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------ void softmax_all ( tensor& dest, const tensor& src ) { DLIB_CASSERT(have_same_dimensions(dest,src)); if (src.size() == 0) return; const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnSoftmaxForward(context(), CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_INSTANCE, &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void softmax_all_gradient ( tensor& grad, const tensor& dest, const tensor& gradient_input ) { DLIB_CASSERT( have_same_dimensions(dest,gradient_input) == true && have_same_dimensions(dest,grad) == true ); if (dest.size() == 0) return; const float alpha = 1; const float beta = is_same_object(grad,gradient_input) ? 0 : 1; CHECK_CUDNN(cudnnSoftmaxBackward(context(), CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_INSTANCE, &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------ void sigmoid ( tensor& dest, const tensor& src ) { DLIB_CASSERT(have_same_dimensions(dest,src)); if (src.size() == 0) return; const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnActivationForward(context(), sigmoid_activation_descriptor(), &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void sigmoid_gradient ( tensor& grad, const tensor& dest, const tensor& gradient_input ) { DLIB_CASSERT( have_same_dimensions(dest,gradient_input) == true && have_same_dimensions(dest,grad) == true ); if (dest.size() == 0) return; const float alpha = 1; const float beta = is_same_object(grad,gradient_input) ? 0 : 1; CHECK_CUDNN(cudnnActivationBackward(context(), sigmoid_activation_descriptor(), &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), descriptor(dest), dest.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ void relu ( tensor& dest, const tensor& src ) { DLIB_CASSERT(have_same_dimensions(dest,src)); if (src.size() == 0) return; const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnActivationForward(context(), relu_activation_descriptor(), &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void relu_gradient ( tensor& grad, const tensor& dest, const tensor& gradient_input ) { DLIB_CASSERT( have_same_dimensions(dest,gradient_input) == true && have_same_dimensions(dest,grad) == true ); if (dest.size() == 0) return; const float alpha = 1; const float beta = is_same_object(grad,gradient_input) ? 0 : 1; CHECK_CUDNN(cudnnActivationBackward(context(), relu_activation_descriptor(), &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), descriptor(dest), dest.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ void tanh ( tensor& dest, const tensor& src ) { DLIB_CASSERT(have_same_dimensions(dest,src)); if (src.size() == 0) return; const float alpha = 1; const float beta = 0; CHECK_CUDNN(cudnnActivationForward(context(), tanh_activation_descriptor(), &alpha, descriptor(src), src.device(), &beta, descriptor(dest), dest.device())); } void tanh_gradient ( tensor& grad, const tensor& dest, const tensor& gradient_input ) { DLIB_CASSERT( have_same_dimensions(dest,gradient_input) == true && have_same_dimensions(dest,grad) == true); if (dest.size() == 0) return; const float alpha = 1; const float beta = is_same_object(grad,gradient_input) ? 0 : 1; CHECK_CUDNN(cudnnActivationBackward(context(), tanh_activation_descriptor(), &alpha, descriptor(dest), dest.device(), descriptor(gradient_input), gradient_input.device(), descriptor(dest), dest.device(), &beta, descriptor(grad), grad.device())); } // ------------------------------------------------------------------------------------ } } #endif // DLIB_USE_CUDA #endif // DLIB_DNN_CuDNN_CPP_