// Copyright (C) 2015 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include "cuda_utils.h" #include "cuda_dlib.h" #include "cudnn_dlibapi.h" #include namespace dlib { namespace cuda { // ----------------------------------------------------------------------------------- void set_device ( int dev ) { CHECK_CUDA(cudaSetDevice(dev)); } int get_device ( ) { int dev = 0; CHECK_CUDA(cudaGetDevice(&dev)); return dev; } std::string get_device_name ( int device ) { cudaDeviceProp props; CHECK_CUDA(cudaGetDeviceProperties(&props, device)); return props.name; } void set_current_device_blocking_sync( ) { CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); } int get_num_devices ( ) { int num_devices; CHECK_CUDA(cudaGetDeviceCount(&num_devices)); return num_devices; } bool can_access_peer (int device_id, int peer_device_id) { int can_access; CHECK_CUDA(cudaDeviceCanAccessPeer(&can_access, device_id, peer_device_id)); return can_access != 0; } bool can_access_peer (const tensor& device, const tensor& peer_device) { return can_access_peer(device.device_id(), peer_device.device_id()); } void device_synchronize (int dev) { raii_set_device set_dev(dev); CHECK_CUDA(cudaDeviceSynchronize()); } void device_synchronize (const tensor& dev) { device_synchronize(dev.device_id()); } enable_peer_access:: enable_peer_access( int device_id, int peer_device_id ) : call_disable(false), device_id(device_id), peer_device_id(peer_device_id) { raii_set_device set_dev(device_id); auto err = cudaDeviceEnablePeerAccess(peer_device_id, 0); if (err == cudaSuccess) { call_disable = true; } else if (err == cudaErrorPeerAccessAlreadyEnabled) { // call cudaGetLastError() to dispose of this error since we don't // care. auto err2 = cudaGetLastError(); if (err2 != cudaErrorPeerAccessAlreadyEnabled) CHECK_CUDA(err2); } else { CHECK_CUDA(err); } } enable_peer_access:: ~enable_peer_access() noexcept(false) { if (call_disable) { raii_set_device set_dev(device_id); CHECK_CUDA(cudaDeviceDisablePeerAccess(peer_device_id)); } } // ----------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------- __global__ void _cuda_inverse_norms(float* invnorms, const float* data, size_t nr, size_t nc, const float eps) { // initialize invnorms before we begin. for (auto i : grid_stride_range_y(0, nr)) for (auto j : grid_stride_range(0, 1)) invnorms[i] = eps; __syncthreads(); for (auto i : grid_stride_range_y(0, nr)) { auto p = data + i*nc; float temp = 0; for (auto j : grid_stride_range(0, nc)) temp += p[j]*p[j]; // and store the sum into invnorms[i] warp_reduce_atomic_add(invnorms[i], temp); } __syncthreads(); for (auto i : grid_stride_range_y(0, nr)) for (auto j : grid_stride_range(0, 1)) invnorms[i] = 1.0/std::sqrt(invnorms[i]); } void inverse_norms ( resizable_tensor& invnorms, const tensor& data, const double eps ) { invnorms.set_size(data.num_samples()); launch_kernel(_cuda_inverse_norms, max_jobs(data.size()/data.num_samples(), data.num_samples()), invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_dot_prods(float* out, const float* lhs, const float* rhs, size_t nr, size_t nc) { // initialize out before we begin. for (auto i : grid_stride_range_y(0, nr)) for (auto j : grid_stride_range(0, 1)) out[i] = 0; __syncthreads(); for (auto i : grid_stride_range_y(0, nr)) { auto l = lhs + i*nc; auto r = rhs + i*nc; float temp = 0; for (auto j : grid_stride_range(0, nc)) temp += l[j]*r[j]; // and store the sum into out[i] warp_reduce_atomic_add(out[i], temp); } } __global__ void _cuda_dot_prods_add_to(float* out, const float* lhs, const float* rhs, size_t nr, size_t nc) { for (auto i : grid_stride_range_y(0, nr)) { auto l = lhs + i*nc; auto r = rhs + i*nc; float temp = 0; for (auto j : grid_stride_range(0, nc)) temp += l[j]*r[j]; // and store the sum into out[i] warp_reduce_atomic_add(out[i], temp); } } void dot_prods ( resizable_tensor& out, const tensor& lhs, const tensor& rhs ) { DLIB_CASSERT(have_same_dimensions(lhs,rhs)); out.set_size(lhs.num_samples()); if (out.size() == 0) return; const auto nr = lhs.num_samples(); const auto nc = lhs.size()/lhs.num_samples(); launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc); } void dot_prods ( bool add_to, tensor& out, const tensor& lhs, const tensor& rhs ) { DLIB_CASSERT(have_same_dimensions(lhs,rhs)); DLIB_CASSERT(out.k() == 1 && out.nr() == 1 && out.nc() == 1); DLIB_CASSERT(out.size() == lhs.num_samples()); const auto nr = lhs.num_samples(); const auto nc = lhs.size()/lhs.num_samples(); if (add_to) launch_kernel(_cuda_dot_prods_add_to, max_jobs(nc,nr), out.device(), lhs.device(), rhs.device(), nr, nc); else launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_scale_columns(float* out, const float* m, const float* v, size_t nr, size_t nc) { for (auto j : grid_stride_range(0, nr*nc)) { out[j] = m[j]*v[j%nc]; } } void scale_columns ( tensor& out, const tensor& m, const tensor& v ) { launch_kernel(_cuda_scale_columns, max_jobs(m.size()), out.device(), m.device(), v.device(), m.num_samples(), m.size()/m.num_samples()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_scale_rows(float* out, const float* m, const float* v, size_t nr, size_t nc) { for (auto j : grid_stride_range(0, nr*nc)) { out[j] = m[j]*v[j/nc]; } } void scale_rows ( tensor& out, const tensor& m, const tensor& v ) { launch_kernel(_cuda_scale_rows, max_jobs(m.size()), out.device(), m.device(), v.device(), m.num_samples(), m.size()/m.num_samples()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_scale_rows2(float* out, const float* m1, const float* m2, const float* v1, const float* v2, size_t nr, size_t nc) { for (auto j : grid_stride_range(0, nr*nc)) { out[j] = (m1[j] - m2[j]*v1[j/nc]) * v2[j/nc]; } } __global__ void _cuda_scale_rows2_beta(const float beta, float* out, const float* m1, const float* m2, const float* v1, const float* v2, size_t nr, size_t nc) { for (auto j : grid_stride_range(0, nr*nc)) { out[j] = beta*out[j] + (m1[j] - m2[j]*v1[j/nc]) * v2[j/nc]; } } void scale_rows2 ( float beta, tensor& out, const tensor& m1, const tensor& m2, const tensor& v1, const tensor& v2 ) { if (beta == 0) { launch_kernel(_cuda_scale_rows2, max_jobs(m1.size()), out.device(), m1.device(), m2.device(), v1.device(), v2.device(), m1.num_samples(), m1.size()/m1.num_samples()); } else { launch_kernel(_cuda_scale_rows2_beta, max_jobs(m1.size()), beta, out.device(), m1.device(), m2.device(), v1.device(), v2.device(), m1.num_samples(), m1.size()/m1.num_samples()); } } // ---------------------------------------------------------------------------------------- __global__ void _cuda_exp(float* dest, const float* src, size_t n) { for (auto i : grid_stride_range(0, n)) dest[i] = ::exp(src[i]); } void exp ( tensor& dest, const tensor& src ) { DLIB_ASSERT(dest.size() == src.size()); launch_kernel(_cuda_exp, max_jobs(src.size()), dest.device(), src.device(), src.size()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_log(float* dest, const float* src, size_t n) { for (auto i : grid_stride_range(0, n)) dest[i] = ::log(src[i]); } void log ( tensor& dest, const tensor& src ) { DLIB_ASSERT(dest.size() == src.size()); launch_kernel(_cuda_log, max_jobs(src.size()), dest.device(), src.device(), src.size()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_log10(float* dest, const float* src, size_t n) { for (auto i : grid_stride_range(0, n)) dest[i] = ::log10(src[i]); } void log10 ( tensor& dest, const tensor& src ) { DLIB_ASSERT(dest.size() == src.size()); launch_kernel(_cuda_log10, max_jobs(src.size()), dest.device(), src.device(), src.size()); } // ----------------------------------------------------------------------------------- __global__ void _cuda_multiply1(float* d, const float* s1, const float* s2, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] = s1[i]*s2[i]; } } __global__ void _cuda_multiply2(float* d, const float* s1, const float* s2, size_t n, size_t s1_n, size_t s2_n, size_t max_size) { for (auto i : grid_stride_range(0, n)) { d[i] = 0; for (size_t j = i; j < max_size; j += n) d[i] += s1[j%s1_n]*s2[j%s2_n]; } } __global__ void _cuda_multiply3(float* d, const float* s1, const float* s2, size_t n, size_t s1_n, size_t s2_n) { for (auto i : grid_stride_range(0, n)) { d[i] = s1[i%s1_n]*s2[i%s2_n]; } } __global__ void _cuda_multiply1_add_to(float* d, const float* s1, const float* s2, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] += s1[i]*s2[i]; } } __global__ void _cuda_multiply2_add_to(float* d, const float* s1, const float* s2, size_t n, size_t s1_n, size_t s2_n, size_t max_size) { for (auto i : grid_stride_range(0, n)) { for (size_t j = i; j < max_size; j += n) d[i] += s1[j%s1_n]*s2[j%s2_n]; } } __global__ void _cuda_multiply3_add_to(float* d, const float* s1, const float* s2, size_t n, size_t s1_n, size_t s2_n) { for (auto i : grid_stride_range(0, n)) { d[i] += s1[i%s1_n]*s2[i%s2_n]; } } void multiply ( bool add_to, tensor& dest, const tensor& src1, const tensor& src2 ) { DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() && dest.nr() == src1.nr() && src1.nr() == src2.nr() && dest.nc() == src1.nc() && src1.nc() == src2.nc() ); const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples()); DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) && (src1.num_samples()==1 || src1.num_samples()==MD) && (src2.num_samples()==1 || src2.num_samples()==MD) ); if (dest.size() == 0) return; const size_t max_size = std::max(std::max(dest.size(),src1.size()),src2.size()); const auto d = dest.host(); const auto s1 = src1.host(); const auto s2 = src2.host(); if (dest.size() == src1.size() && src1.size() == src2.size()) { if (add_to) launch_kernel(_cuda_multiply1_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), src1.size()); else launch_kernel(_cuda_multiply1,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), src1.size()); } else if (dest.num_samples() == 1) { if (add_to) launch_kernel(_cuda_multiply2_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), src1.size(), src2.size(), max_size); else launch_kernel(_cuda_multiply2,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), src1.size(), src2.size(), max_size); } else { if (add_to) launch_kernel(_cuda_multiply3_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), src1.size(), src2.size()); else launch_kernel(_cuda_multiply3,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), src1.size(), src2.size()); } } // ------------------------------------------------------------------------------------ __global__ void _cuda_multiply_conv(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks) { for (auto i : grid_stride_range(0, n)) { auto k = (i/bs)%ks; d[i] = s1[i]*s2[k]; } } __global__ void _cuda_multiply_conv2(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks) { // zero initialize d before we begin. for (auto i : grid_stride_range_y(0, ks)) for (auto j : grid_stride_range(0, 1)) d[i] = 0; __syncthreads(); // loop over all the image planes for (auto i : grid_stride_range_y(0, n)) { // sum all the elements in the i-th image plane float temp = 0; for (auto j : grid_stride_range(i*bs, (i+1)*bs)) temp += s1[j]*s2[j]; auto k = i%ks; // and store the sum into d[k] warp_reduce_atomic_add(d[k], temp); } } __global__ void _cuda_multiply_conv_add_to(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks) { for (auto i : grid_stride_range(0, n)) { auto k = (i/bs)%ks; d[i] += s1[i]*s2[k]; } } __global__ void _cuda_multiply_conv2_add_to(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks) { // loop over all the image planes for (auto i : grid_stride_range_y(0, n)) { // sum all the elements in the i-th image plane float temp = 0; for (auto j : grid_stride_range(i*bs, (i+1)*bs)) temp += s1[j]*s2[j]; auto k = i%ks; // and store the sum into d[k] warp_reduce_atomic_add(d[k], temp); } } void multiply_conv ( bool add_to, tensor& dest, const tensor& src1, const tensor& src2 ) { if (have_same_dimensions(dest,src1)) { DLIB_CASSERT(src2.num_samples() == 1 && src2.nr() == 1 && src2.nc() == 1 && src2.k() == src1.k()); if (dest.size() == 0) return; if (add_to) launch_kernel(_cuda_multiply_conv_add_to,max_jobs(dest.size()), dest.device(), src1.device(), src1.size(), src2.device(), src1.nr()*src1.nc(), src1.k()); else launch_kernel(_cuda_multiply_conv,max_jobs(dest.size()), dest.device(), src1.device(), src1.size(), src2.device(), src1.nr()*src1.nc(), src1.k()); } else { DLIB_CASSERT(have_same_dimensions(src1,src2)); DLIB_CASSERT(dest.num_samples() == 1 && dest.nr() == 1 && dest.nc() == 1 && dest.k() == src1.k()); if (dest.size() == 0) return; const auto bs = src1.nr()*src1.nc(); const auto n = src1.num_samples()*src1.k(); if (add_to) launch_kernel(_cuda_multiply_conv2_add_to, max_jobs(bs,n), dest.device(), src1.device(), n, src2.device(), bs, src1.k()); else launch_kernel(_cuda_multiply_conv2, max_jobs(bs,n), dest.device(), src1.device(), n, src2.device(), bs, src1.k()); } } // ------------------------------------------------------------------------------------ __global__ void _cuda_scale_channels_add_to(float* d, const float* src, size_t n, const float* scales, size_t bs) { for (auto i : grid_stride_range(0, n)) { auto k = i/bs; d[i] += src[i]*scales[k]; } } __global__ void _cuda_scale_channels(float* d, const float* src, size_t n, const float* scales, size_t bs) { for (auto i : grid_stride_range(0, n)) { auto k = i/bs; d[i] = src[i]*scales[k]; } } void scale_channels ( bool add_to, tensor& dest, const tensor& src, const tensor& scales ) { DLIB_CASSERT(have_same_dimensions(dest,src) && scales.num_samples() == src.num_samples() && scales.k() == src.k() && scales.nr() == 1 && scales.nc() == 1 ); if (dest.size() == 0) return; if (add_to) launch_kernel(_cuda_scale_channels_add_to,max_jobs(dest.size()), dest.device(), src.device(), src.size(), scales.device(), src.nr()*src.nc()); else launch_kernel(_cuda_scale_channels,max_jobs(dest.size()), dest.device_write_only(), src.device(), src.size(), scales.device(), src.nr()*src.nc()); } // ------------------------------------------------------------------------------------ __global__ void _cuda_mult1(float* d, const float* s1, const float* s2, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] = s1[i]*s2[i]; } } __global__ void _cuda_mult1_add_to(float* d, const float* s1, const float* s2, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] += s1[i]*s2[i]; } } __global__ void _cuda_mult2(float* d, const float* s1, const float* s2, size_t dn, size_t dk, size_t dr, size_t dc, size_t s1n, size_t s1k, size_t s1r, size_t s1c, size_t s2n, size_t s2k, size_t s2r, size_t s2c) { for (auto i : grid_stride_range(0, dn*dk*dr*dc)) { size_t n,k,r,c; unpack_idx(i, dk,dr,dc, n,k,r,c); float v1 = 0; float v2 = 0; if (n < s1n && k < s1k && r < s1r && c < s1c ) { v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)]; } if (n < s2n && k < s2k && r < s2r && c < s2c ) { v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)]; } d[i] = v1*v2; } } __global__ void _cuda_mult2_add_to(float* d, const float* s1, const float* s2, size_t dn, size_t dk, size_t dr, size_t dc, size_t s1n, size_t s1k, size_t s1r, size_t s1c, size_t s2n, size_t s2k, size_t s2r, size_t s2c) { for (auto i : grid_stride_range(0, dn*dk*dr*dc)) { size_t n,k,r,c; unpack_idx(i, dk,dr,dc, n,k,r,c); float v1 = 0; float v2 = 0; if (n < s1n && k < s1k && r < s1r && c < s1c ) { v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)]; } if (n < s2n && k < s2k && r < s2r && c < s2c ) { v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)]; } d[i] += v1*v2; } } void multiply_zero_padded ( bool add_to, tensor& dest, const tensor& src1, const tensor& src2 ) { if (dest.size() == 0) return; // Do the simple and fast version if everything has the same dimensions if (have_same_dimensions(dest, src1) && have_same_dimensions(dest, src2)) { if (add_to) launch_kernel(_cuda_mult1_add_to,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size()); else launch_kernel(_cuda_mult1,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size()); } else { if (add_to) { // Otherwise, do the more complex version with bounds checking. launch_kernel(_cuda_mult2_add_to,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.num_samples(), dest.k(), dest.nr(), dest.nc(), src1.num_samples(), src1.k(), src1.nr(), src1.nc(), src2.num_samples(), src2.k(), src2.nr(), src2.nc() ); } else { // Otherwise, do the more complex version with bounds checking. launch_kernel(_cuda_mult2,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.num_samples(), dest.k(), dest.nr(), dest.nc(), src1.num_samples(), src1.k(), src1.nr(), src1.nc(), src2.num_samples(), src2.k(), src2.nr(), src2.nc() ); } } } // ------------------------------------------------------------------------------------ __global__ void _cuda_add1(float* d, const float* s1, const float* s2, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] = s1[i]+s2[i]; } } __global__ void _cuda_add2(float* d, const float* s1, const float* s2, size_t dn, size_t dk, size_t dr, size_t dc, size_t s1n, size_t s1k, size_t s1r, size_t s1c, size_t s2n, size_t s2k, size_t s2r, size_t s2c) { for (auto i : grid_stride_range(0, dn*dk*dr*dc)) { size_t n,k,r,c; unpack_idx(i, dk,dr,dc, n,k,r,c); float v1 = 0; float v2 = 0; if (n < s1n && k < s1k && r < s1r && c < s1c ) { v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)]; } if (n < s2n && k < s2k && r < s2r && c < s2c ) { v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)]; } d[i] = v1+v2; } } void add ( tensor& dest, const tensor& src1, const tensor& src2 ) { if (dest.size() == 0) return; // Do the simple and fast version if everything has the same dimensions if (have_same_dimensions(dest, src1) && have_same_dimensions(dest, src2)) { launch_kernel(_cuda_add1,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size()); } else { // Otherwise, do the more complex version with bounds checking. launch_kernel(_cuda_add2,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.num_samples(), dest.k(), dest.nr(), dest.nc(), src1.num_samples(), src1.k(), src1.nr(), src1.nc(), src2.num_samples(), src2.k(), src2.nr(), src2.nc() ); } } // ------------------------------------------------------------------------------------ __global__ void _cuda_affine_transform1(float* d, const float* s, size_t n, float A, float B) { for (auto i : grid_stride_range(0, n)) { d[i] = A*s[i] + B; } } __global__ void _cuda_affine_transform1_0(float* d, const float* s, size_t n, float A) { for (auto i : grid_stride_range(0, n)) { d[i] = A*s[i]; } } void affine_transform( tensor& dest, const tensor& src, const float A, const float B ) { DLIB_CASSERT(dest.size()==src.size()); if (B != 0) launch_kernel(_cuda_affine_transform1,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A, B); else launch_kernel(_cuda_affine_transform1_0,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A); } void affine_transform( tensor& dest, const tensor& src, const float A ) { DLIB_CASSERT(dest.size()==src.size()); launch_kernel(_cuda_affine_transform1_0,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_affine_transform_rect( float* d, const float* s1, const float* s2, const float* s3, float A, float B, float C, size_t start_idx, size_t n, size_t rect_nc, size_t total_nc ) { for (auto i : grid_stride_range(0, n)) { size_t r = i/rect_nc; size_t c = i%rect_nc; size_t idx = r*total_nc + c + start_idx; d[idx] = A*s1[idx] + B*s2[idx] + C*s3[idx]; } } void affine_transform( const rectangle& rect, tensor& dest, const tensor& src1, const tensor& src2, const tensor& src3, float A, float B, float C ) { DLIB_CASSERT(dest.size() == src1.size()); DLIB_CASSERT(dest.size() == src2.size()); DLIB_CASSERT(dest.size() == src3.size()); DLIB_CASSERT(dest.num_samples() == src1.num_samples()); DLIB_CASSERT(dest.num_samples() == src2.num_samples()); DLIB_CASSERT(dest.num_samples() == src3.num_samples()); DLIB_CASSERT(rectangle(0,0, dest.size()/dest.num_samples()-1, dest.num_samples()-1).contains(rect)); launch_kernel(_cuda_affine_transform_rect,max_jobs(rect.area()), dest.device(), src1.device(), src2.device(), src3.device(), A, B, C, rect.left() + rect.top()*(dest.size()/dest.num_samples()), rect.area(), rect.width(), dest.size()/dest.num_samples()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_affine_transform4(float* d, const float* s1, const float* s2, size_t n, float A, float B, float C) { for (auto i : grid_stride_range(0, n)) { d[i] = A*s1[i] + B*s2[i] + C; } } __global__ void _cuda_affine_transform4_0(float* d, const float* s1, const float* s2, size_t n, float A, float B) { for (auto i : grid_stride_range(0, n)) { d[i] = A*s1[i] + B*s2[i]; } } void affine_transform( tensor& dest, const tensor& src1, const tensor& src2, const float A, const float B, const float C ) { DLIB_CASSERT(dest.size()==src1.size()); DLIB_CASSERT(dest.size()==src2.size()); if (C != 0) launch_kernel(_cuda_affine_transform4,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B, C); else launch_kernel(_cuda_affine_transform4_0,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B); } void affine_transform( tensor& dest, const tensor& src1, const tensor& src2, const float A, const float B ) { DLIB_CASSERT(dest.size()==src1.size()); DLIB_CASSERT(dest.size()==src2.size()); launch_kernel(_cuda_affine_transform4_0,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_add_scaled(float* d, const float* s, size_t n, float scale) { for (auto i : grid_stride_range(0, n)) { d[i] += scale*s[i]; } } void add_scaled( tensor& dest, const float scale, const tensor& src ) { DLIB_CASSERT(dest.size()==src.size()); launch_kernel(_cuda_add_scaled,max_jobs(dest.size()),dest.device(), src.device(), dest.size(), scale); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_add_cv_to_all_columns(float beta, float* dest, float alpha, const float* src, size_t size, size_t stride) { for (auto i : grid_stride_range(0, size)) { dest[i] = beta*dest[i] + alpha*src[i/stride]; } } __global__ void _cuda_add_cv_to_all_columns_no_beta(float* dest, float alpha, const float* src, size_t size, size_t stride) { for (auto i : grid_stride_range(0, size)) { dest[i] = alpha*src[i/stride]; } } void add_cv_to_all_columns( float beta, tensor& dest, float alpha, const tensor& src ) { DLIB_CASSERT(dest.num_samples() == src.num_samples() && src.num_samples() == src.size()); if (beta == 0) launch_kernel(_cuda_add_cv_to_all_columns_no_beta, max_jobs(dest.size()), dest.device(), alpha, src.device(), dest.size(), dest.size()/dest.num_samples()); else launch_kernel(_cuda_add_cv_to_all_columns, max_jobs(dest.size()), beta, dest.device(), alpha, src.device(), dest.size(), dest.size()/dest.num_samples()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_affine_transform5( float* d, const float* s1, const float* s2, const float* s3, size_t n, float A, float B, float C, float D ) { for (auto i : grid_stride_range(0, n)) { d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D; } } void affine_transform( tensor& dest, const tensor& src1, const tensor& src2, const tensor& src3, const float A, const float B, const float C, const float D ) { DLIB_CASSERT(dest.size()==src1.size()); DLIB_CASSERT(dest.size()==src2.size()); DLIB_CASSERT(dest.size()==src3.size()); launch_kernel(_cuda_affine_transform5,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), src3.device(), dest.size(), A, B, C, D); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_affine_transform_range( float* d, const float* s1, const float* s2, const float* s3, size_t begin, size_t end, float A, float B, float C ) { for (auto i : grid_stride_range(begin, end)) { d[i] = A*s1[i] + B*s2[i] + C*s3[i]; } } void affine_transform_range( size_t begin, size_t end, tensor& dest, const tensor& src1, const tensor& src2, const tensor& src3, const float A, const float B, const float C ) { DLIB_CASSERT(dest.size()==src1.size()); DLIB_CASSERT(dest.size()==src2.size()); DLIB_CASSERT(dest.size()==src3.size()); DLIB_CASSERT(begin <= end && end <= dest.size()); launch_kernel(_cuda_affine_transform_range,max_jobs(end-begin), dest.device(), src1.device(), src2.device(), src3.device(), begin, end, A, B, C); } // ----------------------------------------------------------------------------------- __global__ void _cuda_affine_transform2(float* d, const float* s, size_t n, const float* A, const float* B) { for (auto i : grid_stride_range(0, n)) { d[i] = A[i]*s[i] + B[i]; } } __global__ void _cuda_affine_transform3(float* d, const float* s, size_t n, const float* A, const float* B, size_t bs) { for (auto i : grid_stride_range(0, n)) { d[i] = A[i%bs]*s[i] + B[i%bs]; } } void affine_transform( tensor& dest, const tensor& src, const tensor& A, const tensor& B ) { DLIB_CASSERT(have_same_dimensions(dest, src)); DLIB_CASSERT( ((A.num_samples()==1 && B.num_samples()==1) || (A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples()))); DLIB_CASSERT( A.nr()==B.nr() && B.nr()==src.nr() && A.nc()==B.nc() && B.nc()==src.nc() && A.k() ==B.k() && B.k()==src.k(), "\nA.nr(): " << A.nr() << "\nB.nr(): " << B.nr() << "\nsrc.nr(): " << src.nr() <<"\nA.nc(): " << A.nc() << "\nB.nc(): " << B.nc() << "\nsrc.nc(): " << src.nc() <<"\nA.k(): " << A.k() << "\nB.k(): " << B.k() << "\nsrc.k(): " << src.k() ); if (A.num_samples() == 1) { launch_kernel(_cuda_affine_transform3,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A.device(), B.device(), A.size()); } else { launch_kernel(_cuda_affine_transform2,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A.device(), B.device()); } } // ---------------------------------------------------------------------------------------- __global__ void _cuda_compute_adam_update( size_t begin, size_t end, float* s, float* m, float* v, const float alpha, const float weight_decay, const float momentum1, const float momentum2, const float* params, const float* params_grad ) { const float eps = 1e-8; // The loop is equivalent to doing this: // m = momentum1*m + (1-momentum1) * (weight_decay*params + params_grad); // v = momentum2*v + (1-momentum2)*squared(weight_decay*params + params_grad); // s = -alpha*m/(sqrt(v) + eps); for (auto i : grid_stride_range(begin, end)) { float g = (weight_decay*params[i] + params_grad[i]); m[i] = momentum1*m[i] + (1-momentum1)*g; v[i] = momentum2*v[i] + (1-momentum2)*g*g; s[i] = -alpha*m[i]/(std::sqrt(v[i]) + eps); } } void compute_adam_update ( size_t begin, size_t end, tensor& s, tensor& m, tensor& v, const float t, const float learning_rate, const float weight_decay, const float momentum1, const float momentum2, const tensor& params, const tensor& params_grad ) { DLIB_CASSERT(s.size() == m.size() && s.size() == v.size() && s.size() == params.size() && s.size() == params_grad.size()); DLIB_CASSERT(begin <= end && end <= params.size()); const float alpha = learning_rate*std::sqrt(1-std::pow(momentum2,t))/(1-std::pow(momentum1, t)); launch_kernel(_cuda_compute_adam_update,max_jobs(end-begin), begin, end, s.device(), m.device(), v.device(), alpha, weight_decay, momentum1, momentum2, params.device(), params_grad.device()); } // ----------------------------------------------------------------------------------- __global__ void _cuda_affine_transform_conv(float* d, const float* s, size_t n, const float* A, const float* B, size_t bs, size_t ks) { for (auto i : grid_stride_range(0, n)) { auto k = (i/bs)%ks; d[i] = A[k]*s[i] + B[k]; } } void affine_transform_conv( tensor& dest, const tensor& src, const tensor& A, const tensor& B ) { DLIB_CASSERT(have_same_dimensions(dest, src)); DLIB_CASSERT(have_same_dimensions(A, B)); DLIB_CASSERT(A.num_samples() == 1 && A.nr() == 1 && A.nc() == 1 && A.k() == src.k()); launch_kernel(_cuda_affine_transform_conv,max_jobs(dest.size()), dest.device(), src.device(), src.size(), A.device(), B.device(), src.nr()*src.nc(), src.k()); } // ----------------------------------------------------------------------------------- __global__ void _add_bias_gradient(float* out, const float* in, size_t n, size_t total_n) { for (auto i : grid_stride_range(0, n)) { out[i] = in[i]; for (size_t j = i+n; j < total_n; j+=n) out[i] += in[j]; } } void assign_bias_gradient ( tensor& grad, const tensor& gradient_input ) { DLIB_CASSERT( grad.num_samples() == 1 && gradient_input.k() == grad.k() && gradient_input.nr() == grad.nr() && gradient_input.nc() == grad.nc() && gradient_input.size() > 0); launch_kernel(_add_bias_gradient,max_jobs(grad.size()),grad.device(), gradient_input.device(), grad.size(), gradient_input.size()); } // ---------------------------------------------------------------------------------------- __global__ void _set_tensor(float* out, size_t n, const float val) { for (auto i : grid_stride_range(0, n)) out[i] = val; } void set_tensor ( tensor& t, float value ) { launch_kernel(_set_tensor, max_jobs(t.size()), t.device(), t.size(), value); } // ---------------------------------------------------------------------------------------- __global__ void _scale_tensor(float* out, size_t n, const float val) { for (auto i : grid_stride_range(0, n)) out[i] *= val; } void scale_tensor ( tensor& t, float value ) { launch_kernel(_scale_tensor, max_jobs(t.size()), t.device(), t.size(), value); } // ----------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------- __global__ void _cuda_threshold(float* d, size_t n, float thresh) { for (auto i : grid_stride_range(0, n)) { d[i] = d[i]>thresh ? 1:0; } } void threshold ( tensor& data, float thresh ) { launch_kernel(_cuda_threshold,max_jobs(data.size()),data.device(), data.size(), thresh); } // ------------------------------------------------------------------------------------ __global__ void _cuda_dot(const float* a, const float* b, size_t n, float* result) { // Parallel sum everything into local temp variables. float temp = 0; for(auto i : grid_stride_range(0, n)) temp += a[i]*b[i]; // Then do the warp reduce add thing to merge into one output value. warp_reduce_atomic_add(*result, temp); } void dot ( const tensor& a, const tensor& b, tensor& result, size_t idx ) { DLIB_CASSERT(a.size() == b.size()); DLIB_CASSERT(idx < result.size()); launch_kernel(_cuda_dot, max_jobs(a.size()), a.device(), b.device(), a.size(), result.device()+idx); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_prelu(const float* s, float* d, size_t n, const float* pp) { const float p = *pp; for (auto i : grid_stride_range(0, n)) { if (s[i] > 0) d[i] = s[i]; else d[i] = p*s[i]; } } void prelu ( tensor& dest, const tensor& src, const tensor& param ) { launch_kernel(_cuda_prelu, max_jobs(dest.size()), src.device(), dest.device(), src.size(), param.device()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_prelu_gradient(float* out, const float* s, const float* gi, size_t n, const float* pp, float* ppgrad) { const float p = *pp; float pgrad = 0; for(auto i : grid_stride_range(0, n)) { if (s[i] > 0) { out[i] += gi[i]; } else { out[i] += p*gi[i]; pgrad += gi[i]*s[i]; } } // Then do the warp reduce add thing to merge into one output value. warp_reduce_atomic_add(*ppgrad, pgrad); } void prelu_gradient ( tensor& grad, const tensor& src, const tensor& gradient_input, const tensor& param, tensor& params_grad ) { params_grad = 0; launch_kernel(_cuda_prelu_gradient, max_jobs(grad.size()), grad.device(), src.device(), gradient_input.device(), grad.size(), param.device(), params_grad.device()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_leaky_relu(const float* s, float* d, size_t n, const float alpha) { for (auto i : grid_stride_range(0, n)) { if (s[i] > 0) d[i] = s[i]; else d[i] = alpha * s[i]; } } void leaky_relu( tensor& dest, const tensor &src, const float alpha ) { launch_kernel(_cuda_leaky_relu, max_jobs(dest.size()), src.device(), dest.device(), src.size(), alpha); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_leaky_relu_gradient_inplace(float* out, const float* s, const float* gi, size_t n, const float alpha) { for (auto i : grid_stride_range(0, n)) { if (s[i] > 0) out[i] = gi[i]; else out[i] = alpha * gi[i]; } } __global__ void _cuda_leaky_relu_gradient(float* out, const float* s, const float* gi, size_t n, const float alpha) { for (auto i : grid_stride_range(0, n)) { if (s[i] > 0) out[i] += gi[i]; else out[i] += alpha * gi[i]; } } void leaky_relu_gradient ( tensor& grad, const tensor& src, const tensor& gradient_input, const float alpha ) { float* out = grad.device(); const float* gi = gradient_input.device(); if (out == gi) { launch_kernel(_cuda_leaky_relu_gradient_inplace, max_jobs(grad.size()), out, src.device(), gi, grad.size(), alpha); } else { launch_kernel(_cuda_leaky_relu_gradient, max_jobs(grad.size()), out, src.device(), gi, grad.size(), alpha); } } // ---------------------------------------------------------------------------------------- __global__ void _cuda_mish(const float* s, float* d, size_t n) { for (auto i : grid_stride_range(0, n)) { const auto e = std::exp(s[i]); const auto delta = 2*e + e*e + 2; d[i] = s[i] - 2*s[i]/delta; } } void mish ( tensor& dest, const tensor& src ) { launch_kernel(_cuda_mish, max_jobs(dest.size()), src.device(), dest.device(), src.size()); } // ---------------------------------------------------------------------------------------- __device__ float mish_compute_gradient(float x) { if (x >= 8) return 1.f; if (x <= -8) return 0.f; const auto e = std::exp(x); const auto delta = 2*e + e*e + 2; const auto omega = 4*(x + 1) + 4*e*e + e*e*e + e*(4*x + 6); return e*omega/(delta*delta); } __global__ void _cuda_mish_gradient_inplace(float* out, const float* s, const float* gi, size_t n) { for (auto i : grid_stride_range(0, n)) out[i] = gi[i]*mish_compute_gradient(s[i]); } __global__ void _cuda_mish_gradient(float* out, const float* s, const float* gi, size_t n) { for (auto i : grid_stride_range(0, n)) out[i] += gi[i]*mish_compute_gradient(s[i]); } void mish_gradient ( tensor& grad, const tensor& src, const tensor& gradient_input ) { float* out = grad.device(); const float* gi = gradient_input.device(); if (out == gi) launch_kernel(_cuda_mish_gradient_inplace, max_jobs(grad.size()), out, src.device(), gi, grad.size()); else launch_kernel(_cuda_mish_gradient, max_jobs(grad.size()), out, src.device(), gi, grad.size()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_gelu(const float* s, float* d, size_t n) { for (auto i : grid_stride_range(0, n)) { d[i] = s[i] * normcdf(s[i]); } } void gelu ( tensor& dest, const tensor& src ) { launch_kernel(_cuda_gelu, max_jobs(dest.size()), src.device(), dest.device(), src.size()); } // ---------------------------------------------------------------------------------------- __device__ float gelu_compute_gradient(float x) { const float beta = 1.0f / CUDART_SQRT_2PI; const float cdf = normcdf(x); const float pdf = beta*std::exp(-0.5f*x*x); return cdf + x * pdf; } __global__ void _cuda_gelu_gradient_inplace(float* out, const float* s, const float* gi, size_t n) { for (auto i : grid_stride_range(0, n)) out[i] = gi[i]*gelu_compute_gradient(s[i]); } __global__ void _cuda_gelu_gradient(float* out, const float* s, const float* gi, size_t n) { for (auto i : grid_stride_range(0, n)) out[i] += gi[i]*gelu_compute_gradient(s[i]); } void gelu_gradient ( tensor& grad, const tensor& src, const tensor& gradient_input ) { float* out = grad.device(); const float* gi = gradient_input.device(); if (out == gi) launch_kernel(_cuda_gelu_gradient_inplace, max_jobs(grad.size()), out, src.device(), gi, grad.size()); else launch_kernel(_cuda_gelu_gradient, max_jobs(grad.size()), out, src.device(), gi, grad.size()); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_resize_bilinear(size_t dsize, size_t dchan_size, size_t dnc, float* d, size_t schan_size, int snr, int snc, const float* s, const float x_scale, const float y_scale) { for(auto i : grid_stride_range(0, dsize)) { const int idx = i%dchan_size; const int channel = i/dchan_size; const int sidx = channel*schan_size; const int r = idx/dnc; const int c = idx%dnc; const float y = r*y_scale; const int top = static_cast(::floorf(y)); const int bottom = ::min(top+1, snr-1); const float tb_frac = y - top; const float x = c*x_scale; const int left = static_cast(::floorf(x)); const int right = ::min(left+1, snc-1); const float lr_frac = x - left; float tl = s[sidx+top*snc+left]; float tr = s[sidx+top*snc+right]; float bl = s[sidx+bottom*snc+left]; float br = s[sidx+bottom*snc+right]; float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) + tb_frac*((1-lr_frac)*bl + lr_frac*br); d[i] = temp; } } __global__ void _cuda_resize_bilinear_strided(size_t dsize, size_t dchan_size, size_t dnc, float* d, size_t schan_size, int snr, int snc, const float* s, const float x_scale, const float y_scale, size_t dest_row_stride, size_t src_row_stride, size_t dest_chan_size_strided ) { for(auto i : grid_stride_range(0, dsize)) { const int idx = i%dchan_size; const int channel = i/dchan_size; const int sidx = channel*schan_size; const int r = idx/dnc; const int c = idx%dnc; const int didx = channel*dest_chan_size_strided + r*dest_row_stride+c; const float y = r*y_scale; const int top = static_cast(::floorf(y)); const int bottom = ::min(top+1, snr-1); const float tb_frac = y - top; const float x = c*x_scale; const int left = static_cast(::floorf(x)); const int right = ::min(left+1, snc-1); const float lr_frac = x - left; float tl = s[sidx+top*src_row_stride+left]; float tr = s[sidx+top*src_row_stride+right]; float bl = s[sidx+bottom*src_row_stride+left]; float br = s[sidx+bottom*src_row_stride+right]; float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) + tb_frac*((1-lr_frac)*bl + lr_frac*br); d[didx] = temp; } } void resize_bilinear ( tensor& dest, long dest_row_stride, long dest_channel_stride, const tensor& src, long src_row_stride, long src_channel_stride ) { DLIB_CASSERT(is_same_object(dest, src)==false); DLIB_CASSERT(dest.num_samples() == src.num_samples()); DLIB_CASSERT(dest.k() == src.k()); if (dest.size() == 0 || src.size() == 0) return; const float x_scale = (src.nc()-1)/(float)std::max((dest.nc()-1),1); const float y_scale = (src.nr()-1)/(float)std::max((dest.nr()-1),1); if (dest.nc() == dest_row_stride && dest.nr()*dest.nc()==dest_channel_stride && src.nc() == src_row_stride && src.nr()*src.nc()==src_channel_stride) { launch_kernel(_cuda_resize_bilinear, dest.size(), dest.nr()*dest.nc(), dest.nc(), dest.device(), src.nr()*src.nc(), src.nr(), src.nc(), src.device(), x_scale, y_scale); } else { launch_kernel(_cuda_resize_bilinear_strided, dest.size(), dest.nr()*dest.nc(), dest.nc(), dest.device(), src_channel_stride, src.nr(), src.nc(), src.device(), x_scale, y_scale, dest_row_stride, src_row_stride, dest_channel_stride); } } // ---------------------------------------------------------------------------------------- __global__ void _cuda_resize_bilinear_gradient(size_t dsize, size_t dchan_size, size_t dnc, const float* d, size_t schan_size, int snr, int snc, float* s, const float x_scale, const float y_scale) { for(auto i : grid_stride_range(0, dsize)) { const float tmp = d[i]; const int idx = i%dchan_size; const int channel = i/dchan_size; const int sidx = channel*schan_size; const int r = idx/dnc; const int c = idx%dnc; const float y = r*y_scale; const int top = static_cast(::floorf(y)); const int bottom = ::min(top+1, snr-1); const float tb_frac = y - top; const float x = c*x_scale; const int left = static_cast(::floorf(x)); const int right = ::min(left+1, snc-1); const float lr_frac = x - left; atomicAdd(s+sidx+top*snc+left, tmp*(1-tb_frac)*(1-lr_frac)); atomicAdd(s+sidx+top*snc+right, tmp*(1-tb_frac)*(lr_frac)); atomicAdd(s+sidx+bottom*snc+left, tmp*(tb_frac)*(1-lr_frac)); atomicAdd(s+sidx+bottom*snc+right, tmp*(tb_frac)*(lr_frac)); } } __global__ void _cuda_resize_bilinear_gradient_strided(size_t dsize, size_t dchan_size, size_t dnc, const float* d, size_t schan_size, int snr, int snc, float* s, const float x_scale, const float y_scale, size_t dest_row_stride, size_t src_row_stride, size_t dest_chan_size_strided ) { for(auto i : grid_stride_range(0, dsize)) { const int idx = i%dchan_size; const int channel = i/dchan_size; const int didx = channel*dest_chan_size_strided; const int sidx = channel*schan_size; const int r = idx/dnc; const int c = idx%dnc; const float tmp = d[didx + r*dest_row_stride+c]; const float y = r*y_scale; const int top = static_cast(::floorf(y)); const int bottom = ::min(top+1, snr-1); const float tb_frac = y - top; const float x = c*x_scale; const int left = static_cast(::floorf(x)); const int right = ::min(left+1, snc-1); const float lr_frac = x - left; atomicAdd(s+sidx+top*src_row_stride+left, tmp*(1-tb_frac)*(1-lr_frac)); atomicAdd(s+sidx+top*src_row_stride+right, tmp*(1-tb_frac)*(lr_frac)); atomicAdd(s+sidx+bottom*src_row_stride+left, tmp*(tb_frac)*(1-lr_frac)); atomicAdd(s+sidx+bottom*src_row_stride+right, tmp*(tb_frac)*(lr_frac)); } } void resize_bilinear_gradient ( tensor& grad, long grad_row_stride, long grad_channel_stride, const tensor& gradient_input, long gradient_input_row_stride, long gradient_input_channel_stride ) { DLIB_CASSERT(is_same_object(grad, gradient_input)==false); DLIB_CASSERT(gradient_input.num_samples() == grad.num_samples()); DLIB_CASSERT(gradient_input.k() == grad.k()); if (grad.size() == 0 || gradient_input.size() == 0) return; const float x_scale = (grad.nc()-1)/(float)std::max((gradient_input.nc()-1),1); const float y_scale = (grad.nr()-1)/(float)std::max((gradient_input.nr()-1),1); if (grad.nc() == grad_row_stride && grad.nr()*grad.nc()==grad_channel_stride && gradient_input.nc() == gradient_input_row_stride && gradient_input.nr()*gradient_input.nc()==gradient_input_channel_stride) { launch_kernel(_cuda_resize_bilinear_gradient, gradient_input.size(), gradient_input.nr()*gradient_input.nc(), gradient_input.nc(), gradient_input.device(), grad.nr()*grad.nc(), grad.nr(), grad.nc(), grad.device(), x_scale, y_scale); } else { launch_kernel(_cuda_resize_bilinear_gradient_strided, gradient_input.size(), gradient_input.nr()*gradient_input.nc(), gradient_input.nc(), gradient_input.device(), grad_channel_stride, grad.nr(), grad.nc(), grad.device(), x_scale, y_scale, gradient_input_row_stride, grad_row_stride, gradient_input_channel_stride); } } // ---------------------------------------------------------------------------------------- __global__ void _cuda_layer_normalize(float* out, const float* s, float* m, float* v, const float* g, const float* b, float eps, size_t ns, size_t num) { // compute means and sum of squares for (auto n : grid_stride_range_y(0, ns)) { auto p = s + n * num; float means = 0; float invstds = 0; for (auto i : grid_stride_range(0, num)) { means += p[i]; invstds += p[i] * p[i]; } warp_reduce_atomic_add(m[n], means/num); warp_reduce_atomic_add(v[n], invstds/num); } __syncthreads(); // compute variances for (auto n : grid_stride_range_y(0, ns)) { for (auto i : grid_stride_range(0, 1)) { auto var = v[n] - m[n] * m[n]; v[n] = 1.0f / std::sqrt(var + eps); } } __syncthreads(); for (auto n : grid_stride_range_y(0, ns)) { for (auto i : grid_stride_range(0, num)) { const float val = (s[n*num+i]-m[n])*v[n]; out[n*num+i] = val*g[n]+b[n]; } } } __global__ void _cuda_layer_normalize_gradient(float* out, float* gg, float* bg, const float* s, const float* gi, const float* m, const float* v, const float* g, float* dm, float* dv, float eps, size_t ns, size_t num) { for (auto n : grid_stride_range_y(0, ns)) { float temp_bg = 0; float temp_gg = 0; float temp_dv = 0; for (auto i : grid_stride_range(0, num)) { auto idx = n*num+i; const float x_hat = (s[idx] - m[n])*v[n]; temp_bg += gi[idx]; temp_gg += gi[idx]*x_hat; const float dx = gi[idx] * g[n]; temp_dv += dx*(s[idx] - m[n])*-0.5*v[n]*v[n]*v[n]; } warp_reduce_atomic_add(bg[n], temp_bg); warp_reduce_atomic_add(gg[n], temp_gg); warp_reduce_atomic_add(dv[n], temp_dv); } __syncthreads(); for (auto n : grid_stride_range_y(0, ns)) { float temp_dm = 0; for (auto i : grid_stride_range(0, num)) { auto idx = n*num+i; const float dx = gi[idx]*g[n]; temp_dm += dx*-v[n] + dv[n] * -2*(s[idx] - m[n])/num; } warp_reduce_atomic_add(dm[n], temp_dm); } __syncthreads(); for (auto n : grid_stride_range_y(0, ns)) { for (auto i : grid_stride_range(0, num)) { auto idx = n*num+i; const float dx = gi[idx]*g[n]; out[idx] += dx*v[n] + dv[n] * 2*(s[idx] - m[n])/num + dm[n]/num; } } } void layer_normalize ( const double eps, resizable_tensor& dest, resizable_tensor& means, resizable_tensor& invstds, const tensor& src, const tensor& gamma, const tensor& beta ) { const long num = src.k() * src.nr() * src.nc(); DLIB_CASSERT( have_same_dimensions(gamma, beta) && src.num_samples() == gamma.size() && src.num_samples() == beta.size() && eps > 0, "\ngamma.k(): " << gamma.k() << "\ngamma.nr(): " << gamma.nr() << "\ngamma.nc(): " << gamma.nc() << "\nbeta.k(): " << beta.k() << "\nbeta.nr(): " << beta.nr() << "\nbeta.nc(): " << beta.nc() << "\nsrc.k(): " << src.k() << "\nsrc.nr(): " << src.nr() << "\nsrc.nc(): " << src.nc() << "\neps: " << eps ); dest.copy_size(src); means.set_size(src.num_samples()); invstds.set_size(src.num_samples()); means = 0; invstds = 0; launch_kernel(_cuda_layer_normalize, max_jobs(num, src.num_samples()), dest.device(), src.device(), means.device(), invstds.device(), gamma.device(), beta.device(), eps, src.num_samples(), num); } void layer_normalize_gradient ( const double eps, const tensor& gradient_input, const tensor& means, const tensor& invstds, const tensor& src, const tensor& gamma, tensor& src_grad, tensor& gamma_grad, tensor& beta_grad ) { const long num = src.k() * src.nr() * src.nc(); DLIB_CASSERT(src.num_samples() == means.size()); DLIB_CASSERT(src.num_samples() == invstds.size()); DLIB_CASSERT(src.num_samples() == gamma.size()); DLIB_CASSERT(src.num_samples() == gamma_grad.size()); DLIB_CASSERT(src.num_samples() == beta_grad.size()); DLIB_CASSERT(have_same_dimensions(gradient_input, src)); DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad)); DLIB_CASSERT(eps > 0); beta_grad = 0; gamma_grad = 0; resizable_tensor dvars, dmeans; dvars.copy_size(invstds); dmeans.copy_size(means); dvars = 0; dmeans = 0; launch_kernel(_cuda_layer_normalize_gradient, max_jobs(num, src.num_samples()), src_grad.device(), gamma_grad.device(), beta_grad.device(), src.device(), gradient_input.device(), means.device(), invstds.device(), gamma.device(), dmeans.device(), dvars.device(), eps, src.num_samples(), num); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_copy_tensor_add_to (float* dest, size_t size, const float* src, size_t dest_stride, size_t src_stride, size_t block_size) { for(auto i : grid_stride_range(0, size)) { size_t blk = i/block_size; size_t j = i%block_size; dest[blk*dest_stride + j] += src[blk*src_stride + j]; } } __global__ void _cuda_copy_tensor (float* dest, size_t size, const float* src, size_t dest_stride, size_t src_stride, size_t block_size) { for(auto i : grid_stride_range(0, size)) { size_t blk = i/block_size; size_t j = i%block_size; dest[blk*dest_stride + j] = src[blk*src_stride + j]; } } void copy_tensor( bool add_to, tensor& dest, size_t dest_k_offset, const tensor& src, size_t src_k_offset, size_t count_k ) { const size_t dest_sample_size = static_cast(dest.nc() * dest.nr() * dest.k()); const size_t src_sample_size = static_cast(src.nc() * src.nr() * src.k()); const size_t block_size = count_k * dest.nc() * dest.nr(); DLIB_CASSERT(dest.num_samples() == src.num_samples() && dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size"); DLIB_CASSERT(dest.k() - dest_k_offset >= count_k, "Not enough space in dest tensor"); DLIB_CASSERT(src.k() - src_k_offset >= count_k, "Not enough space in src tensor"); float* dest_p = dest.device() + dest_k_offset * dest.nc() * dest.nr(); const float* src_p = src.device() + src_k_offset * src.nc() * src.nr();; if (add_to) { launch_kernel(_cuda_copy_tensor_add_to, max_jobs(dest.size()), dest_p, block_size*dest.num_samples(), src_p, dest_sample_size, src_sample_size, block_size); } else { launch_kernel(_cuda_copy_tensor, max_jobs(dest.size()), dest_p, block_size*dest.num_samples(), src_p, dest_sample_size, src_sample_size, block_size); } } // ---------------------------------------------------------------------------------------- __device__ float cuda_log1pexp(float x) { if (x <= -18) return std::exp(x); else if (-18 < x && x <= 9) return std::log1pf(std::exp(x)); else if (9 < x && x <= 16) return x + expf(-x); else return x; } __global__ void _cuda_compute_loss_binary_log_per_pixel(float* loss_out, float* g, const float* truth, const float* out_data, size_t n, const float scale) { float loss = 0; for(auto i : grid_stride_range(0, n)) { const float y = truth[i]; if (y > 0.f) { const float temp = cuda_log1pexp(-out_data[i]); loss += y*temp; g[i] = y*scale*(g[i]-1); } else if (y < 0.f) { const float temp = -(-out_data[i]-cuda_log1pexp(-out_data[i])); loss += -y*temp; g[i] = -y*scale*g[i]; } else { g[i] = 0.f; } } warp_reduce_atomic_add(*loss_out, loss); } // ---------------------------------------------------------------------------------------- __device__ float cuda_safe_log(float x, float epsilon = 1e-10) { // Prevent trying to calculate the logarithm of a very small number (let alone zero) if (x >= epsilon) return ::log(x); else return ::log(epsilon); } __global__ void _cuda_compute_loss_multiclass_log_per_pixel(float* loss_out, float* g, const uint16_t* truth, size_t n, size_t plane_size, size_t sample_size, size_t nk, uint16_t label_to_ignore, const float scale) { float loss = 0; for(auto i : grid_stride_range(0, n)) { const size_t k = (i/plane_size)%nk; const size_t idx = (i%plane_size) + plane_size*(i/sample_size); const size_t y = truth[idx]; if (k == y) { loss -= cuda_safe_log(g[i]); g[i] = scale*(g[i] - 1); } else if (y == label_to_ignore) { g[i] = 0.f; } else { g[i] = scale*g[i]; } } warp_reduce_atomic_add(*loss_out, loss); } __global__ void _cuda_compute_loss_multiclass_log_per_pixel_weighted(float* loss_out, float* g, const uint16_t* truth, size_t n, size_t plane_size, size_t sample_size, size_t nk, const float* weights, const float scale) { float loss = 0; for(auto i : grid_stride_range(0, n)) { const size_t k = (i/plane_size)%nk; const size_t idx = (i%plane_size) + plane_size*(i/sample_size); const size_t y = truth[idx]; const float weight = weights[idx]; if (k == y) { loss -= weight*cuda_safe_log(g[i]); g[i] = weight*scale*(g[i] - 1); } else { g[i] = weight*scale*g[i]; } } warp_reduce_atomic_add(*loss_out, loss); } // ---------------------------------------------------------------------------------------- __global__ void _cuda_compute_loss_mean_squared_per_channel_and_pixel(float* loss_out, float* g, const float* truth, const float* out_data, size_t n, const float scale) { float loss = 0; for (auto i : grid_stride_range(0, n)) { const float y = truth[i]; const float temp = y - out_data[i]; loss += temp * temp; g[i] = -temp * scale; } warp_reduce_atomic_add(*loss_out, loss); } // ---------------------------------------------------------------------------------------- void compute_loss_binary_log_per_pixel:: do_work( cuda_data_ptr loss_work_buffer, cuda_data_ptr truth_buffer, const tensor& subnetwork_output, tensor& gradient, double& loss ) { CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float))); sigmoid(gradient, subnetwork_output); // The loss we output is the average loss over the mini-batch, and also over each element of the matrix output. const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc()); launch_kernel(_cuda_compute_loss_binary_log_per_pixel, max_jobs(gradient.size()), loss_work_buffer.data(), gradient.device(), truth_buffer.data(), subnetwork_output.device(), gradient.size(), scale); float floss; dlib::cuda::memcpy(&floss, loss_work_buffer); loss = scale*floss; } void compute_loss_multiclass_log_per_pixel:: do_work( cuda_data_ptr loss_work_buffer, cuda_data_ptr truth_buffer, const tensor& subnetwork_output, tensor& gradient, double& loss ) { CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float))); softmax(gradient, subnetwork_output); static const uint16_t label_to_ignore = std::numeric_limits::max(); // The loss we output is the average loss over the mini-batch, and also over each element of the matrix output. const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc()); launch_kernel(_cuda_compute_loss_multiclass_log_per_pixel, max_jobs(gradient.size()), loss_work_buffer.data(), gradient.device(), truth_buffer.data(), gradient.size(), gradient.nr()*gradient.nc(), gradient.nr()*gradient.nc()*gradient.k(), gradient.k(), label_to_ignore, scale); float floss; dlib::cuda::memcpy(&floss, loss_work_buffer); loss = scale*floss; } void compute_loss_multiclass_log_per_pixel_weighted:: do_work( cuda_data_ptr loss_work_buffer, cuda_data_ptr truth_buffer, cuda_data_ptr weights_buffer, const tensor& subnetwork_output, tensor& gradient, double& loss ) { CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float))); softmax(gradient, subnetwork_output); // The loss we output is the average loss over the mini-batch, and also over each element of the matrix output. const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc()); launch_kernel(_cuda_compute_loss_multiclass_log_per_pixel_weighted, max_jobs(gradient.size()), loss_work_buffer.data(), gradient.device(), truth_buffer.data(), gradient.size(), gradient.nr()*gradient.nc(), gradient.nr()*gradient.nc()*gradient.k(), gradient.k(), weights_buffer.data(), scale); float floss; dlib::cuda::memcpy(&floss, loss_work_buffer); loss = scale*floss; } void compute_loss_mean_squared_per_channel_and_pixel:: do_work( cuda_data_ptr loss_work_buffer, cuda_data_ptr truth_buffer, const tensor& subnetwork_output, tensor& gradient, double& loss ) { CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float))); // The loss we output is the average loss over the mini-batch, and also over each element of the matrix output. const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.k() * subnetwork_output.nr() * subnetwork_output.nc()); launch_kernel(_cuda_compute_loss_mean_squared_per_channel_and_pixel , max_jobs(gradient.size()), loss_work_buffer.data(), gradient.device(), truth_buffer.data(), subnetwork_output.device(), gradient.size(), scale); float floss; dlib::cuda::memcpy(&floss, loss_work_buffer); loss = scale*floss; } // ---------------------------------------------------------------------------------------- } }