// Copyright (C) 2003 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifdef DLIB_ALL_SOURCE_END #include "dlib_basic_cpp_build_tutorial.txt" #endif #ifndef DLIB_ALGs_ #define DLIB_ALGs_ // this file contains miscellaneous stuff // Give people who forget the -std=c++11 option a reminder #if (defined(__GNUC__) && ((__GNUC__ >= 4 && __GNUC_MINOR__ >= 8) || (__GNUC__ > 4))) || \ (defined(__clang__) && ((__clang_major__ >= 3 && __clang_minor__ >= 4) || (__clang_major__ >= 3))) #if __cplusplus < 201103 #error "Dlib requires C++11 support. Give your compiler the -std=c++11 option to enable it." #endif #endif #if defined __NVCC__ // Disable the "statement is unreachable" message since it will go off on code that is // actually reachable but just happens to not be reachable sometimes during certain // template instantiations. #pragma diag_suppress code_is_unreachable #endif #ifdef _MSC_VER #if _MSC_VER < 1900 #error "dlib versions newer than v19.1 use C++11 and therefore require Visual Studio 2015 or newer." #endif // Disable the following warnings for Visual Studio // this is to disable the "'this' : used in base member initializer list" // warning you get from some of the GUI objects since all the objects // require that their parent class be passed into their constructor. // In this case though it is totally safe so it is ok to disable this warning. #pragma warning(disable : 4355) // This is a warning you get sometimes when Visual Studio performs a Koenig Lookup. // This is a bug in visual studio. It is a totally legitimate thing to // expect from a compiler. #pragma warning(disable : 4675) // This is a warning you get from visual studio 2005 about things in the standard C++ // library being "deprecated." I checked the C++ standard and it doesn't say jack // about any of them (I checked the searchable PDF). So this warning is total Bunk. #pragma warning(disable : 4996) // This is a warning you get from visual studio 2003: // warning C4345: behavior change: an object of POD type constructed with an initializer // of the form () will be default-initialized. // I love it when this compiler gives warnings about bugs in previous versions of itself. #pragma warning(disable : 4345) // Disable warnings about conversion from size_t to unsigned long and long. #pragma warning(disable : 4267) // Disable warnings about conversion from double to float #pragma warning(disable : 4244) #pragma warning(disable : 4305) // Disable "warning C4180: qualifier applied to function type has no meaning; ignored". // This warning happens often in generic code that works with functions and isn't useful. #pragma warning(disable : 4180) // Disable "warning C4290: C++ exception specification ignored except to indicate a function is not __declspec(nothrow)" #pragma warning(disable : 4290) // DNN module uses template-based network declaration that leads to very long // type names. Visual Studio will produce Warning C4503 in such cases. https://msdn.microsoft.com/en-us/library/074af4b6.aspx says // that correct binaries are still produced even when this warning happens, but linker errors from visual studio, if they occur could be confusing. #pragma warning( disable: 4503 ) #endif #ifdef __BORLANDC__ // Disable the following warnings for the Borland Compilers // // These warnings just say that the compiler is refusing to inline functions with // loops or try blocks in them. // #pragma option -w-8027 #pragma option -w-8026 #endif #include <string> // for the exceptions #ifdef __CYGWIN__ namespace std { typedef std::basic_string<wchar_t> wstring; } #endif #include "platform.h" #include "windows_magic.h" #include <algorithm> // for std::swap #include <new> // for std::bad_alloc #include <cstdlib> #include <stddef.h> #include <limits> // for std::numeric_limits for is_finite() #include "assert.h" #include "error.h" #include "noncopyable.h" #include "enable_if.h" #include "uintn.h" #include "numeric_constants.h" #include "memory_manager_stateless/memory_manager_stateless_kernel_1.h" // for the default memory manager // ---------------------------------------------------------------------------------------- /*!A _dT !*/ template <typename charT> inline charT _dTcast (const char a, const wchar_t b); template <> inline char _dTcast<char> (const char a, const wchar_t ) { return a; } template <> inline wchar_t _dTcast<wchar_t> (const char , const wchar_t b) { return b; } template <typename charT> inline const charT* _dTcast ( const char* a, const wchar_t* b); template <> inline const char* _dTcast<char> ( const char* a, const wchar_t* ) { return a; } template <> inline const wchar_t* _dTcast<wchar_t> ( const char* , const wchar_t* b) { return b; } #define _dT(charT,str) _dTcast<charT>(str,L##str) /*! requires - charT == char or wchar_t - str == a string or character literal ensures - returns the literal in the form of a charT type literal. !*/ // ---------------------------------------------------------------------------------------- namespace dlib { // ---------------------------------------------------------------------------------------- /*!A default_memory_manager This memory manager just calls new and delete directly. !*/ typedef memory_manager_stateless_kernel_1<char> default_memory_manager; // ---------------------------------------------------------------------------------------- /*!A swap !*/ // make swap available in the dlib namespace using std::swap; // ---------------------------------------------------------------------------------------- /*! Here is where I define my return codes. It is important that they all be < 0. !*/ enum general_return_codes { TIMEOUT = -1, WOULDBLOCK = -2, OTHER_ERROR = -3, SHUTDOWN = -4, PORTINUSE = -5 }; // ---------------------------------------------------------------------------------------- inline unsigned long square_root ( unsigned long value ) /*! requires - value <= 2^32 - 1 ensures - returns the square root of value. if the square root is not an integer then it will be rounded up to the nearest integer. !*/ { unsigned long x; // set the initial guess for what the root is depending on // how big value is if (value < 3) return value; else if (value < 4096) // 12 x = 45; else if (value < 65536) // 16 x = 179; else if (value < 1048576) // 20 x = 717; else if (value < 16777216) // 24 x = 2867; else if (value < 268435456) // 28 x = 11469; else // 32 x = 45875; // find the root x = (x + value/x)>>1; x = (x + value/x)>>1; x = (x + value/x)>>1; x = (x + value/x)>>1; if (x*x < value) return x+1; else return x; } // ---------------------------------------------------------------------------------------- template < typename T > void median ( T& one, T& two, T& three ); /*! requires - T implements operator< - T is swappable by a global swap() ensures - #one is the median - #one, #two, and #three is some permutation of one, two, and three. !*/ template < typename T > void median ( T& one, T& two, T& three ) { using std::swap; using dlib::swap; if ( one < two ) { // one < two if ( two < three ) { // one < two < three : two swap(one,two); } else { // one < two >= three if ( one < three) { // three swap(three,one); } } } else { // one >= two if ( three < one ) { // three <= one >= two if ( three < two ) { // two swap(two,one); } else { // three swap(three,one); } } } } // ---------------------------------------------------------------------------------------- namespace relational_operators { template < typename A, typename B > constexpr bool operator> ( const A& a, const B& b ) { return b < a; } // --------------------------------- template < typename A, typename B > constexpr bool operator!= ( const A& a, const B& b ) { return !(a == b); } // --------------------------------- template < typename A, typename B > constexpr bool operator<= ( const A& a, const B& b ) { return !(b < a); } // --------------------------------- template < typename A, typename B > constexpr bool operator>= ( const A& a, const B& b ) { return !(a < b); } } // ---------------------------------------------------------------------------------------- template < typename T > void exchange ( T& a, T& b ) /*! This function does the exact same thing that global swap does and it does it by just calling swap. But a lot of compilers have problems doing a Koenig Lookup and the fact that this has a different name (global swap has the same name as the member functions called swap) makes them compile right. So this is a workaround but not too ugly of one. But hopefully I get get rid of this in a few years. So this function is already deprecated. This also means you should NOT use this function in your own code unless you have to support an old buggy compiler that benefits from this hack. !*/ { using std::swap; using dlib::swap; swap(a,b); } // ---------------------------------------------------------------------------------------- /*!A is_pointer_type This is a template where is_pointer_type<T>::value == true when T is a pointer type and false otherwise. !*/ template < typename T > class is_pointer_type { public: enum { value = false }; private: is_pointer_type(); }; template < typename T > class is_pointer_type<T*> { public: enum { value = true }; private: is_pointer_type(); }; // ---------------------------------------------------------------------------------------- /*!A is_const_type This is a template where is_const_type<T>::value == true when T is a const type and false otherwise. !*/ template <typename T> struct is_const_type { static const bool value = false; }; template <typename T> struct is_const_type<const T> { static const bool value = true; }; template <typename T> struct is_const_type<const T&> { static const bool value = true; }; // ---------------------------------------------------------------------------------------- /*!A is_reference_type This is a template where is_reference_type<T>::value == true when T is a reference type and false otherwise. !*/ template <typename T> struct is_reference_type { static const bool value = false; }; template <typename T> struct is_reference_type<const T&> { static const bool value = true; }; template <typename T> struct is_reference_type<T&> { static const bool value = true; }; // ---------------------------------------------------------------------------------------- /*!A is_same_type This is a template where is_same_type<T,U>::value == true when T and U are the same type and false otherwise. !*/ template < typename T, typename U > class is_same_type { public: enum {value = false}; private: is_same_type(); }; template <typename T> class is_same_type<T,T> { public: enum {value = true}; private: is_same_type(); }; // ---------------------------------------------------------------------------------------- /*!A is_float_type This is a template that can be used to determine if a type is one of the built int floating point types (i.e. float, double, or long double). !*/ template < typename T > struct is_float_type { const static bool value = false; }; template <> struct is_float_type<float> { const static bool value = true; }; template <> struct is_float_type<double> { const static bool value = true; }; template <> struct is_float_type<long double> { const static bool value = true; }; // ---------------------------------------------------------------------------------------- /*!A is_convertible This is a template that can be used to determine if one type is convertible into another type. For example: is_convertible<int,float>::value == true // because ints are convertible to floats is_convertible<int*,float>::value == false // because int pointers are NOT convertible to floats !*/ template <typename from, typename to> struct is_convertible { struct yes_type { char a; }; struct no_type { yes_type a[2]; }; static const from& from_helper(); static yes_type test(to); static no_type test(...); const static bool value = sizeof(test(from_helper())) == sizeof(yes_type); }; // ---------------------------------------------------------------------------------------- struct general_ {}; struct special_ : general_ {}; template<typename> struct int_ { typedef int type; }; // ---------------------------------------------------------------------------------------- /*!A is_same_object This is a templated function which checks if both of its arguments are actually references to the same object. It returns true if they are and false otherwise. !*/ // handle the case where T and U are unrelated types. template < typename T, typename U > typename disable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type is_same_object ( const T& a, const U& b ) { return ((void*)&a == (void*)&b); } // handle the case where T and U are related types because their pointers can be // implicitly converted into one or the other. E.g. a derived class and its base class. // Or where both T and U are just the same type. This way we make sure that if there is a // valid way to convert between these two pointer types then we will take that route rather // than the void* approach used otherwise. template < typename T, typename U > typename enable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type is_same_object ( const T& a, const U& b ) { return (&a == &b); } // ---------------------------------------------------------------------------------------- /*!A is_unsigned_type This is a template where is_unsigned_type<T>::value == true when T is an unsigned scalar type and false when T is a signed scalar type. !*/ template < typename T > struct is_unsigned_type { static const bool value = static_cast<T>((static_cast<T>(0)-static_cast<T>(1))) > 0; }; template <> struct is_unsigned_type<long double> { static const bool value = false; }; template <> struct is_unsigned_type<double> { static const bool value = false; }; template <> struct is_unsigned_type<float> { static const bool value = false; }; // ---------------------------------------------------------------------------------------- /*!A is_signed_type This is a template where is_signed_type<T>::value == true when T is a signed scalar type and false when T is an unsigned scalar type. !*/ template < typename T > struct is_signed_type { static const bool value = !is_unsigned_type<T>::value; }; // ---------------------------------------------------------------------------------------- template < typename T > class copy_functor { public: void operator() ( const T& source, T& destination ) const { destination = source; } }; // ---------------------------------------------------------------------------------------- /*!A static_switch To use this template you give it some number of boolean expressions and it tells you which one of them is true. If more than one of them is true then it causes a compile time error. for example: static_switch<1 + 1 == 2, 4 - 1 == 4>::value == 1 // because the first expression is true static_switch<1 + 1 == 3, 4 == 4>::value == 2 // because the second expression is true static_switch<1 + 1 == 3, 4 == 5>::value == 0 // 0 here because none of them are true static_switch<1 + 1 == 2, 4 == 4>::value == compiler error // because more than one expression is true !*/ template < bool v1 = 0, bool v2 = 0, bool v3 = 0, bool v4 = 0, bool v5 = 0, bool v6 = 0, bool v7 = 0, bool v8 = 0, bool v9 = 0, bool v10 = 0, bool v11 = 0, bool v12 = 0, bool v13 = 0, bool v14 = 0, bool v15 = 0 > struct static_switch; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 0; }; template <> struct static_switch<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 1; }; template <> struct static_switch<0,1,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 2; }; template <> struct static_switch<0,0,1,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 3; }; template <> struct static_switch<0,0,0,1,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 4; }; template <> struct static_switch<0,0,0,0,1,0,0,0,0,0,0,0,0,0,0> { const static int value = 5; }; template <> struct static_switch<0,0,0,0,0,1,0,0,0,0,0,0,0,0,0> { const static int value = 6; }; template <> struct static_switch<0,0,0,0,0,0,1,0,0,0,0,0,0,0,0> { const static int value = 7; }; template <> struct static_switch<0,0,0,0,0,0,0,1,0,0,0,0,0,0,0> { const static int value = 8; }; template <> struct static_switch<0,0,0,0,0,0,0,0,1,0,0,0,0,0,0> { const static int value = 9; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,1,0,0,0,0,0> { const static int value = 10; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,1,0,0,0,0> { const static int value = 11; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,1,0,0,0> { const static int value = 12; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,1,0,0> { const static int value = 13; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,1,0> { const static int value = 14; }; template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,1> { const static int value = 15; }; // ---------------------------------------------------------------------------------------- /*!A is_built_in_scalar_type This is a template that allows you to determine if the given type is a built in scalar type such as an int, char, float, short, etc. For example, is_built_in_scalar_type<char>::value == true For example, is_built_in_scalar_type<std::string>::value == false !*/ template <typename T> struct is_built_in_scalar_type { const static bool value = false; }; template <> struct is_built_in_scalar_type<float> { const static bool value = true; }; template <> struct is_built_in_scalar_type<double> { const static bool value = true; }; template <> struct is_built_in_scalar_type<long double> { const static bool value = true; }; template <> struct is_built_in_scalar_type<short> { const static bool value = true; }; template <> struct is_built_in_scalar_type<int> { const static bool value = true; }; template <> struct is_built_in_scalar_type<long> { const static bool value = true; }; template <> struct is_built_in_scalar_type<unsigned short> { const static bool value = true; }; template <> struct is_built_in_scalar_type<unsigned int> { const static bool value = true; }; template <> struct is_built_in_scalar_type<unsigned long> { const static bool value = true; }; template <> struct is_built_in_scalar_type<uint64> { const static bool value = true; }; template <> struct is_built_in_scalar_type<int64> { const static bool value = true; }; template <> struct is_built_in_scalar_type<char> { const static bool value = true; }; template <> struct is_built_in_scalar_type<signed char> { const static bool value = true; }; template <> struct is_built_in_scalar_type<unsigned char> { const static bool value = true; }; // Don't define one for wchar_t when using a version of visual studio // older than 8.0 (visual studio 2005) since before then they improperly set // wchar_t to be a typedef rather than its own type as required by the C++ // standard. #if !defined(_MSC_VER) || _NATIVE_WCHAR_T_DEFINED template <> struct is_built_in_scalar_type<wchar_t> { const static bool value = true; }; #endif // ---------------------------------------------------------------------------------------- template < typename T > typename enable_if<is_built_in_scalar_type<T>,bool>::type is_finite ( const T& value ) /*! requires - value must be some kind of scalar type such as int or double ensures - returns true if value is a finite value (e.g. not infinity or NaN) and false otherwise. !*/ { if (is_float_type<T>::value) return -std::numeric_limits<T>::infinity() < value && value < std::numeric_limits<T>::infinity(); else return true; } // ---------------------------------------------------------------------------------------- /*!A promote This is a template that takes one of the built in scalar types and gives you another scalar type that should be big enough to hold sums of values from the original scalar type. The new scalar type will also always be signed. For example, promote<uint16>::type == int32 !*/ template <typename T, size_t s = sizeof(T)> struct promote; template <typename T> struct promote<T,1> { typedef int32 type; }; template <typename T> struct promote<T,2> { typedef int32 type; }; template <typename T> struct promote<T,4> { typedef int64 type; }; template <typename T> struct promote<T,8> { typedef int64 type; }; template <> struct promote<float,sizeof(float)> { typedef double type; }; template <> struct promote<double,sizeof(double)> { typedef double type; }; template <> struct promote<long double,sizeof(long double)> { typedef long double type; }; // ---------------------------------------------------------------------------------------- /*!A assign_zero_if_built_in_scalar_type This function assigns its argument the value of 0 if it is a built in scalar type according to the is_built_in_scalar_type<> template. If it isn't a built in scalar type then it does nothing. !*/ template <typename T> inline typename disable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T&){} template <typename T> inline typename enable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T& a){a=0;} // ---------------------------------------------------------------------------------------- /*!A basic_type This is a template that takes a type and strips off any const, volatile, or reference qualifiers and gives you back the basic underlying type. So for example: basic_type<const int&>::type == int !*/ template <typename T> struct basic_type { typedef T type; }; template <typename T> struct basic_type<const T> { typedef T type; }; template <typename T> struct basic_type<const T&> { typedef T type; }; template <typename T> struct basic_type<volatile const T&> { typedef T type; }; template <typename T> struct basic_type<T&> { typedef T type; }; template <typename T> struct basic_type<volatile T&> { typedef T type; }; template <typename T> struct basic_type<volatile T> { typedef T type; }; template <typename T> struct basic_type<volatile const T> { typedef T type; }; // ---------------------------------------------------------------------------------------- template <typename T> T put_in_range ( const T& a, const T& b, const T& val ) /*! requires - T is a type that looks like double, float, int, or so forth ensures - if (val is within the range [a,b]) then - returns val - else - returns the end of the range [a,b] that is closest to val !*/ { if (a < b) { if (val < a) return a; else if (val > b) return b; } else { if (val < b) return b; else if (val > a) return a; } return val; } // overload for double inline double put_in_range(const double& a, const double& b, const double& val) { return put_in_range<double>(a,b,val); } // ---------------------------------------------------------------------------------------- /*!A tabs This is a template to compute the absolute value a number at compile time. For example, abs<-4>::value == 4 abs<4>::value == 4 !*/ template <long x, typename enabled=void> struct tabs { const static long value = x; }; template <long x> struct tabs<x,typename enable_if_c<(x < 0)>::type> { const static long value = -x; }; // ---------------------------------------------------------------------------------------- /*!A tmax This is a template to compute the max of two values at compile time For example, abs<4,7>::value == 7 !*/ template <long x, long y, typename enabled=void> struct tmax { const static long value = x; }; template <long x, long y> struct tmax<x,y,typename enable_if_c<(y > x)>::type> { const static long value = y; }; // ---------------------------------------------------------------------------------------- /*!A tmin This is a template to compute the min of two values at compile time For example, abs<4,7>::value == 4 !*/ template <long x, long y, typename enabled=void> struct tmin { const static long value = x; }; template <long x, long y> struct tmin<x,y,typename enable_if_c<(y < x)>::type> { const static long value = y; }; // ---------------------------------------------------------------------------------------- #define DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(testname, returnT, funct_name, args) \ struct _two_bytes_##testname { char a[2]; }; \ template < typename T, returnT (T::*funct)args > \ struct _helper_##testname { typedef char type; }; \ template <typename T> \ static char _has_##testname##_helper( typename _helper_##testname<T,&T::funct_name >::type ) { return 0;} \ template <typename T> \ static _two_bytes_##testname _has_##testname##_helper(int) { return _two_bytes_##testname();} \ template <typename T> struct _##testname##workaroundbug { \ const static unsigned long U = sizeof(_has_##testname##_helper<T>('a')); }; \ template <typename T, unsigned long U = _##testname##workaroundbug<T>::U > \ struct testname { static const bool value = false; }; \ template <typename T> \ struct testname<T,1> { static const bool value = true; }; /*!A DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST The DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST() macro is used to define traits templates that tell you if a class has a certain member function. For example, to make a test to see if a class has a public method with the signature void print(int) you would say: DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, (int)) Then you can check if a class, T, has this method by looking at the boolean value: has_print<T>::value which will be true if the member function is in the T class. Note that you can test for member functions taking no arguments by simply passing in empty () like so: DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, ()) This would test for a member of the form: void print(). To test for const member functions you would use a statement such as this: DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, ()const) This would test for a member of the form: void print() const. To test for const templated member functions you would use a statement such as this: DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, template print<int>, ()) This would test for a member of the form: template <typename T> void print(). !*/ // ---------------------------------------------------------------------------------------- /*!A is_function This is a template that allows you to determine if the given type is a function. For example, void funct(); is_built_in_scalar_type<funct>::value == true is_built_in_scalar_type<int>::value == false !*/ template <typename T> struct is_function { static const bool value = false; }; template <typename T> struct is_function<T (void)> { static const bool value = true; }; template <typename T, typename A0> struct is_function<T (A0)> { static const bool value = true; }; template <typename T, typename A0, typename A1> struct is_function<T (A0, A1)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2> struct is_function<T (A0, A1, A2)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3> struct is_function<T (A0, A1, A2, A3)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> struct is_function<T (A0, A1, A2, A3, A4)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5> struct is_function<T (A0,A1,A2,A3,A4,A5)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> struct is_function<T (A0,A1,A2,A3,A4,A5,A6)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8)> { static const bool value = true; }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9)> { static const bool value = true; }; template <typename T> class funct_wrap0 { public: funct_wrap0(T (&f_)()):f(f_){} T operator()() const { return f(); } private: T (&f)(); }; template <typename T, typename A0> class funct_wrap1 { public: funct_wrap1(T (&f_)(A0)):f(f_){} T operator()(A0 a0) const { return f(a0); } private: T (&f)(A0); }; template <typename T, typename A0, typename A1> class funct_wrap2 { public: funct_wrap2(T (&f_)(A0,A1)):f(f_){} T operator()(A0 a0, A1 a1) const { return f(a0,a1); } private: T (&f)(A0,A1); }; template <typename T, typename A0, typename A1, typename A2> class funct_wrap3 { public: funct_wrap3(T (&f_)(A0,A1,A2)):f(f_){} T operator()(A0 a0, A1 a1, A2 a2) const { return f(a0,a1,a2); } private: T (&f)(A0,A1,A2); }; template <typename T, typename A0, typename A1, typename A2, typename A3> class funct_wrap4 { public: funct_wrap4(T (&f_)(A0,A1,A2,A3)):f(f_){} T operator()(A0 a0, A1 a1, A2 a2, A3 a3) const { return f(a0,a1,a2,a3); } private: T (&f)(A0,A1,A2,A3); }; template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> class funct_wrap5 { public: funct_wrap5(T (&f_)(A0,A1,A2,A3,A4)):f(f_){} T operator()(A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) const { return f(a0,a1,a2,a3,a4); } private: T (&f)(A0,A1,A2,A3,A4); }; /*!A wrap_function This is a template that allows you to turn a global function into a function object. The reason for this template's existence is so you can do stuff like this: template <typename T> void call_funct(const T& funct) { cout << funct(); } std::string test() { return "asdfasf"; } int main() { call_funct(wrap_function(test)); } The above code doesn't work right on some compilers if you don't use wrap_function. !*/ template <typename T> funct_wrap0<T> wrap_function(T (&f)()) { return funct_wrap0<T>(f); } template <typename T, typename A0> funct_wrap1<T,A0> wrap_function(T (&f)(A0)) { return funct_wrap1<T,A0>(f); } template <typename T, typename A0, typename A1> funct_wrap2<T,A0,A1> wrap_function(T (&f)(A0, A1)) { return funct_wrap2<T,A0,A1>(f); } template <typename T, typename A0, typename A1, typename A2> funct_wrap3<T,A0,A1,A2> wrap_function(T (&f)(A0, A1, A2)) { return funct_wrap3<T,A0,A1,A2>(f); } template <typename T, typename A0, typename A1, typename A2, typename A3> funct_wrap4<T,A0,A1,A2,A3> wrap_function(T (&f)(A0, A1, A2, A3)) { return funct_wrap4<T,A0,A1,A2,A3>(f); } template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> funct_wrap5<T,A0,A1,A2,A3,A4> wrap_function(T (&f)(A0, A1, A2, A3, A4)) { return funct_wrap5<T,A0,A1,A2,A3,A4>(f); } // ---------------------------------------------------------------------------------------- template <unsigned long bSIZE> class stack_based_memory_block : noncopyable { /*! WHAT THIS OBJECT REPRESENTS This object is a simple container for a block of memory of bSIZE bytes. This memory block is located on the stack and properly aligned to hold any kind of object. !*/ public: static const unsigned long size = bSIZE; stack_based_memory_block(): data(mem.data) {} void* get () { return data; } /*! ensures - returns a pointer to the block of memory contained in this object !*/ const void* get () const { return data; } /*! ensures - returns a pointer to the block of memory contained in this object !*/ private: // You obviously can't have a block of memory that has zero bytes in it. COMPILE_TIME_ASSERT(bSIZE > 0); union mem_block { // All of this garbage is to make sure this union is properly aligned // (a union is always aligned such that everything in it would be properly // aligned. So the assumption here is that one of these objects has // a large enough alignment requirement to satisfy any object this // block of memory might be cast into). void* void_ptr; int integer; struct { void (stack_based_memory_block::*callback)(); stack_based_memory_block* o; } stuff; long double more_stuff; uint64 var1; uint32 var2; double var3; char data[size]; } mem; // The reason for having this variable is that doing it this way avoids // warnings from gcc about violations of strict-aliasing rules. void* const data; }; // ---------------------------------------------------------------------------------------- template < typename T, typename F > auto max_scoring_element( const T& container, F score_func ) -> decltype(std::make_pair(*container.begin(), 0.0)) /*! requires - container has .begin() and .end(), allowing it to be enumerated. - score_func() is a function that takes an element of the container and returns a double. ensures - This function finds the element of container that has the largest score, according to score_func(), and returns a std::pair containing that maximal element along with the score. - If the container is empty then make_pair(a default initialized object, -infinity) is returned. !*/ { double best_score = -std::numeric_limits<double>::infinity(); auto best_i = container.begin(); for (auto i = container.begin(); i != container.end(); ++i) { auto score = score_func(*i); if (score > best_score) { best_score = score; best_i = i; } } using item_type = typename std::remove_reference<decltype(*best_i)>::type; if (best_i == container.end()) return std::make_pair(item_type(), best_score); else return std::make_pair(*best_i, best_score); } // ---------------------------------------------------------------------------------------- template < typename T, typename F > auto min_scoring_element( const T& container, F score_func ) -> decltype(std::make_pair(*container.begin(), 0.0)) /*! requires - container has .begin() and .end(), allowing it to be enumerated. - score_func() is a function that takes an element of the container and returns a double. ensures - This function finds the element of container that has the smallest score, according to score_func(), and returns a std::pair containing that minimal element along with the score. - If the container is empty then make_pair(a default initialized object, infinity) is returned. !*/ { double best_score = std::numeric_limits<double>::infinity(); auto best_i = container.begin(); for (auto i = container.begin(); i != container.end(); ++i) { auto score = score_func(*i); if (score < best_score) { best_score = score; best_i = i; } } using item_type = typename std::remove_reference<decltype(*best_i)>::type; if (best_i == container.end()) return std::make_pair(item_type(), best_score); else return std::make_pair(*best_i, best_score); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_ALGs_