// Copyright (C) 2011 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_MAX_COST_ASSIgNMENT_ABSTRACT_Hh_ #ifdef DLIB_MAX_COST_ASSIgNMENT_ABSTRACT_Hh_ #include "../matrix.h" #include <vector> namespace dlib { // ---------------------------------------------------------------------------------------- template <typename EXP> typename EXP::type assignment_cost ( const matrix_exp<EXP>& cost, const std::vector<long>& assignment ); /*! requires - cost.nr() == cost.nc() - for all valid i: - 0 <= assignment[i] < cost.nr() ensures - Interprets cost as a cost assignment matrix. That is, cost(i,j) represents the cost of assigning i to j. - Interprets assignment as a particular set of assignments. That is, i is assigned to assignment[i]. - returns the cost of the given assignment. That is, returns a number which is: sum over i: cost(i,assignment[i]) !*/ // ---------------------------------------------------------------------------------------- template <typename EXP> std::vector<long> max_cost_assignment ( const matrix_exp<EXP>& cost ); /*! requires - EXP::type == some integer type (e.g. int) (i.e. cost must contain integers rather than floats or doubles) - cost.nr() == cost.nc() ensures - Finds and returns the solution to the following optimization problem: Maximize: f(A) == assignment_cost(cost, A) Subject to the following constraints: - The elements of A are unique. That is, there aren't any elements of A which are equal. - A.size() == cost.nr() - This function implements the O(N^3) version of the Hungarian algorithm where N is the number of rows in the cost matrix. !*/ // ---------------------------------------------------------------------------------------- } #endif // DLIB_MAX_COST_ASSIgNMENT_ABSTRACT_Hh_