// Copyright (C) 2018 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include "opaque_types.h" #include #include "dlib/pixel.h" #include #include using namespace dlib; using namespace std; namespace py = pybind11; // ---------------------------------------------------------------------------------------- template numpy_image py_resize_image ( const numpy_image& img, unsigned long rows, unsigned long cols ) { numpy_image out; set_image_size(out, rows, cols); resize_image(img, out); return out; } // ---------------------------------------------------------------------------------------- template numpy_image py_scale_image ( const numpy_image& img, double scale ) { DLIB_CASSERT(scale > 0, "Scale factor must be greater than 0"); numpy_image out = img; resize_image(scale, out); return out; } // ---------------------------------------------------------------------------------------- template numpy_image py_equalize_histogram ( const numpy_image& img ) { numpy_image out; equalize_histogram(img,out); return out; } // ---------------------------------------------------------------------------------------- std::vector py_remove_incoherent_edge_pixels ( const std::vector& line, const numpy_image& horz_gradient, const numpy_image& vert_gradient, double angle_threshold ) { DLIB_CASSERT(num_rows(horz_gradient) == num_rows(vert_gradient)); DLIB_CASSERT(num_columns(horz_gradient) == num_columns(vert_gradient)); DLIB_CASSERT(angle_threshold >= 0); for (const auto& p : line) DLIB_CASSERT(get_rect(horz_gradient).contains(p), "All line points must be inside the given images."); return remove_incoherent_edge_pixels(line, horz_gradient, vert_gradient, angle_threshold); } // ---------------------------------------------------------------------------------------- template numpy_image py_extract_image_4points ( const numpy_image& img, const py::list& corners, long rows, long columns ) { DLIB_CASSERT(rows >= 0); DLIB_CASSERT(columns >= 0); DLIB_CASSERT(len(corners) == 4); numpy_image out; set_image_size(out, rows, columns); try { extract_image_4points(img, out, python_list_to_array(corners)); return out; } catch (py::cast_error&){} try { extract_image_4points(img, out, python_list_to_array(corners)); return out; } catch(py::cast_error&) { throw dlib::error("extract_image_4points() requires the corners argument to be a list of 4 dpoints or 4 lines."); } } // ---------------------------------------------------------------------------------------- template numpy_image py_mbd ( const numpy_image& img, size_t iterations, bool do_left_right_scans ) { numpy_image out; min_barrier_distance(img, out, iterations, do_left_right_scans); return out; } numpy_image py_mbd2 ( const numpy_image& img, size_t iterations, bool do_left_right_scans ) { numpy_image out; min_barrier_distance(img, out, iterations, do_left_right_scans); return out; } // ---------------------------------------------------------------------------------------- template numpy_image py_extract_image_chip ( const numpy_image& img, const chip_details& chip_location ) { numpy_image out; extract_image_chip(img, chip_location, out); return out; } template py::list py_extract_image_chips ( const numpy_image& img, const py::list& chip_locations ) { dlib::array> out; extract_image_chips(img, python_list_to_vector(chip_locations), out); py::list ret; for (const auto& i : out) ret.append(i); return ret; } // ---------------------------------------------------------------------------------------- void register_extract_image_chip (py::module& m) { const char* class_docs = "WHAT THIS OBJECT REPRESENTS \n\ This is a simple tool for passing in a pair of row and column values to the \n\ chip_details constructor."; auto print_chip_dims_str = [](const chip_dims& d) { std::ostringstream sout; sout << "rows="<< d.rows << ", cols=" << d.cols; return sout.str(); }; auto print_chip_dims_repr = [](const chip_dims& d) { std::ostringstream sout; sout << "chip_dims(rows="<< d.rows << ", cols=" << d.cols << ")"; return sout.str(); }; py::class_(m, "chip_dims", class_docs) .def(py::init(), py::arg("rows"), py::arg("cols")) .def("__str__", print_chip_dims_str) .def("__repr__", print_chip_dims_repr) .def_readwrite("rows", &chip_dims::rows) .def_readwrite("cols", &chip_dims::cols); auto print_chip_details_str = [](const chip_details& d) { std::ostringstream sout; sout << "rect=" << d.rect << ", angle="<< d.angle << ", rows="<< d.rows << ", cols=" << d.cols; return sout.str(); }; auto print_chip_details_repr = [](const chip_details& d) { std::ostringstream sout; sout << "chip_details(rect=drectangle(" << d.rect.left()<<","<(m, "chip_details", class_docs) .def(py::init(), py::arg("rect")) .def(py::init(), py::arg("rect"), "ensures \n\ - self.rect == rect_ \n\ - self.angle == 0 \n\ - self.rows == rect.height() \n\ - self.cols == rect.width()" /*! ensures - self.rect == rect_ - self.angle == 0 - self.rows == rect.height() - self.cols == rect.width() !*/ ) .def(py::init(), py::arg("rect"), py::arg("size")) .def(py::init(), py::arg("rect"), py::arg("size"), "ensures \n\ - self.rect == rect \n\ - self.angle == 0 \n\ - self.rows and self.cols is set such that the total size of the chip is as close \n\ to size as possible but still matches the aspect ratio of rect. \n\ - As long as size and the aspect ratio of rect stays constant then \n\ self.rows and self.cols will always have the same values. This means \n\ that, for example, if you want all your chips to have the same dimensions \n\ then ensure that size is always the same and also that rect always has \n\ the same aspect ratio. Otherwise the calculated values of self.rows and \n\ self.cols may be different for different chips. Alternatively, you can \n\ use the chip_details constructor below that lets you specify the exact \n\ values for rows and cols." /*! ensures - self.rect == rect - self.angle == 0 - self.rows and self.cols is set such that the total size of the chip is as close to size as possible but still matches the aspect ratio of rect. - As long as size and the aspect ratio of rect stays constant then self.rows and self.cols will always have the same values. This means that, for example, if you want all your chips to have the same dimensions then ensure that size is always the same and also that rect always has the same aspect ratio. Otherwise the calculated values of self.rows and self.cols may be different for different chips. Alternatively, you can use the chip_details constructor below that lets you specify the exact values for rows and cols. !*/ ) .def(py::init(), py::arg("rect"), py::arg("size"), py::arg("angle")) .def(py::init(), py::arg("rect"), py::arg("size"), py::arg("angle"), "ensures \n\ - self.rect == rect \n\ - self.angle == angle \n\ - self.rows and self.cols is set such that the total size of the chip is as \n\ close to size as possible but still matches the aspect ratio of rect. \n\ - As long as size and the aspect ratio of rect stays constant then \n\ self.rows and self.cols will always have the same values. This means \n\ that, for example, if you want all your chips to have the same dimensions \n\ then ensure that size is always the same and also that rect always has \n\ the same aspect ratio. Otherwise the calculated values of self.rows and \n\ self.cols may be different for different chips. Alternatively, you can \n\ use the chip_details constructor below that lets you specify the exact \n\ values for rows and cols." /*! ensures - self.rect == rect - self.angle == angle - self.rows and self.cols is set such that the total size of the chip is as close to size as possible but still matches the aspect ratio of rect. - As long as size and the aspect ratio of rect stays constant then self.rows and self.cols will always have the same values. This means that, for example, if you want all your chips to have the same dimensions then ensure that size is always the same and also that rect always has the same aspect ratio. Otherwise the calculated values of self.rows and self.cols may be different for different chips. Alternatively, you can use the chip_details constructor below that lets you specify the exact values for rows and cols. !*/ ) .def(py::init(), py::arg("rect"), py::arg("dims")) .def(py::init(), py::arg("rect"), py::arg("dims"), "ensures \n\ - self.rect == rect \n\ - self.angle == 0 \n\ - self.rows == dims.rows \n\ - self.cols == dims.cols" /*! ensures - self.rect == rect - self.angle == 0 - self.rows == dims.rows - self.cols == dims.cols !*/ ) .def(py::init(), py::arg("rect"), py::arg("dims"), py::arg("angle")) .def(py::init(), py::arg("rect"), py::arg("dims"), py::arg("angle"), "ensures \n\ - self.rect == rect \n\ - self.angle == angle \n\ - self.rows == dims.rows \n\ - self.cols == dims.cols" /*! ensures - self.rect == rect - self.angle == angle - self.rows == dims.rows - self.cols == dims.cols !*/ ) .def(py::init,std::vector,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims")) .def(py::init,std::vector,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims"), "requires \n\ - len(chip_points) == len(img_points) \n\ - len(chip_points) >= 2 \n\ ensures \n\ - The chip will be extracted such that the pixel locations chip_points[i] \n\ in the chip are mapped to img_points[i] in the original image by a \n\ similarity transform. That is, if you know the pixelwize mapping you \n\ want between the chip and the original image then you use this function \n\ of chip_details constructor to define the mapping. \n\ - self.rows == dims.rows \n\ - self.cols == dims.cols \n\ - self.rect and self.angle are computed based on the given size of the output chip \n\ (specified by dims) and the similarity transform between the chip and \n\ image (specified by chip_points and img_points)." /*! requires - len(chip_points) == len(img_points) - len(chip_points) >= 2 ensures - The chip will be extracted such that the pixel locations chip_points[i] in the chip are mapped to img_points[i] in the original image by a similarity transform. That is, if you know the pixelwize mapping you want between the chip and the original image then you use this function of chip_details constructor to define the mapping. - self.rows == dims.rows - self.cols == dims.cols - self.rect and self.angle are computed based on the given size of the output chip (specified by dims) and the similarity transform between the chip and image (specified by chip_points and img_points). !*/ ) .def("__str__", print_chip_details_str) .def("__repr__", print_chip_details_repr) .def_readwrite("rect", &chip_details::rect) .def_readwrite("angle", &chip_details::angle) .def_readwrite("rows", &chip_details::rows) .def_readwrite("cols", &chip_details::cols); { typedef std::vector type; py::bind_vector(m, "chip_detailss", "An array of chip_details objects.") .def("extend", extend_vector_with_python_list); } m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location")); m.def("extract_image_chip", &py_extract_image_chip, py::arg("img"), py::arg("chip_location"), " This routine is just like extract_image_chips() except it takes a single \n" " chip_details object and returns a single chip image rather than a list of images." ); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations")); m.def("extract_image_chips", &py_extract_image_chips, py::arg("img"), py::arg("chip_locations"), "requires \n\ - for all valid i: \n\ - chip_locations[i].rect.is_empty() == false \n\ - chip_locations[i].rows*chip_locations[i].cols != 0 \n\ ensures \n\ - This function extracts \"chips\" from an image. That is, it takes a list of \n\ rectangular sub-windows (i.e. chips) within an image and extracts those \n\ sub-windows, storing each into its own image. It also scales and rotates the \n\ image chips according to the instructions inside each chip_details object. \n\ It uses bilinear interpolation. \n\ - The extracted image chips are returned in a python list of numpy arrays. The \n\ length of the returned array is len(chip_locations). \n\ - Let CHIPS be the returned array, then we have: \n\ - for all valid i: \n\ - #CHIPS[i] == The image chip extracted from the position \n\ chip_locations[i].rect in img. \n\ - #CHIPS[i].shape(0) == chip_locations[i].rows \n\ - #CHIPS[i].shape(1) == chip_locations[i].cols \n\ - The image will have been rotated counter-clockwise by \n\ chip_locations[i].angle radians, around the center of \n\ chip_locations[i].rect, before the chip was extracted. \n\ - Any pixels in an image chip that go outside img are set to 0 (i.e. black)." /*! requires - for all valid i: - chip_locations[i].rect.is_empty() == false - chip_locations[i].rows*chip_locations[i].cols != 0 ensures - This function extracts "chips" from an image. That is, it takes a list of rectangular sub-windows (i.e. chips) within an image and extracts those sub-windows, storing each into its own image. It also scales and rotates the image chips according to the instructions inside each chip_details object. It uses bilinear interpolation. - The extracted image chips are returned in a python list of numpy arrays. The length of the returned array is len(chip_locations). - Let CHIPS be the returned array, then we have: - for all valid i: - #CHIPS[i] == The image chip extracted from the position chip_locations[i].rect in img. - #CHIPS[i].shape(0) == chip_locations[i].rows - #CHIPS[i].shape(1) == chip_locations[i].cols - The image will have been rotated counter-clockwise by chip_locations[i].angle radians, around the center of chip_locations[i].rect, before the chip was extracted. - Any pixels in an image chip that go outside img are set to 0 (i.e. black). !*/ ); m.def("get_face_chip_details", static_cast(&get_face_chip_details), py::arg("det"), py::arg("size")=200, py::arg("padding")=0.2, "Given a full_object_detection det, returns a chip_details object which can be \n\ used to extract an image of given size and padding." ); m.def("get_face_chip_details", static_cast (*)(const std::vector&, const unsigned long, const double)>(&get_face_chip_details), py::arg("dets"), py::arg("size")=200, py::arg("padding")=0.2, "Given a list of full_object_detection dets, returns a chip_details object which can be \n\ used to extract an image of given size and padding." ); } // ---------------------------------------------------------------------------------------- py::array py_tile_images ( const py::list& images ) { DLIB_CASSERT(len(images) > 0); if (is_image(images[0].cast())) { std::vector> tmp(len(images)); for (size_t i = 0; i < tmp.size(); ++i) assign_image(tmp[i], images[i].cast()); return numpy_image(tile_images(tmp)); } else { std::vector> tmp(len(images)); for (size_t i = 0; i < tmp.size(); ++i) assign_image(tmp[i], images[i].cast()); return numpy_image(tile_images(tmp)); } } // ---------------------------------------------------------------------------------------- template py::array_t py_get_histogram ( const numpy_image& img, size_t hist_size ) { matrix hist; get_histogram(img,hist,hist_size); return numpy_image(std::move(hist)).squeeze(); } // ---------------------------------------------------------------------------------------- py::array py_sub_image ( const py::array& img, const rectangle& win ) { DLIB_CASSERT(img.ndim() >= 2); auto width_step = img.strides(0); const long nr = img.shape(0); const long nc = img.shape(1); rectangle rect(0,0,nc-1,nr-1); rect = rect.intersect(win); std::vector shape(img.ndim()), strides(img.ndim()); for (size_t i = 0; i < shape.size(); ++i) { shape[i] = img.shape(i); strides[i] = img.strides(i); } shape[0] = rect.height(); shape[1] = rect.width(); size_t col_stride = 1; for (size_t i = 1; i < strides.size(); ++i) col_stride *= strides[i]; const void* data = (char*)img.data() + col_stride*rect.left() + rect.top()*strides[0]; return py::array(img.dtype(), shape, strides, data, img); } py::array py_sub_image2 ( const py::tuple& image_and_rect_tuple ) { DLIB_CASSERT(len(image_and_rect_tuple) == 2); return py_sub_image(image_and_rect_tuple[0].cast(), image_and_rect_tuple[1].cast()); } // ---------------------------------------------------------------------------------------- void bind_image_classes2(py::module& m) { const char* docs = "Resizes img, using bilinear interpolation, to have the indicated number of rows and columns."; m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, docs, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_resize_image, docs, py::arg("img"), py::arg("rows"), py::arg("cols")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale")); m.def("resize_image", &py_scale_image, py::arg("img"), py::arg("scale"), "Resizes img, using bilinear interpolation, to have the new size (img rows * scale, img cols * scale)" ); register_extract_image_chip(m); m.def("sub_image", &py_sub_image, py::arg("img"), py::arg("rect"), "Returns a new numpy array that references the sub window in img defined by rect. \n\ If rect is larger than img then rect is cropped so that it does not go outside img. \n\ Therefore, this routine is equivalent to performing: \n\ win = get_rect(img).intersect(rect) \n\ subimg = img[win.top():win.bottom()-1,win.left():win.right()-1]" /*! Returns a new numpy array that references the sub window in img defined by rect. If rect is larger than img then rect is cropped so that it does not go outside img. Therefore, this routine is equivalent to performing: win = get_rect(img).intersect(rect) subimg = img[win.top():win.bottom()-1,win.left():win.right()-1] !*/ ); m.def("sub_image", &py_sub_image2, py::arg("image_and_rect_tuple"), "Performs: return sub_image(image_and_rect_tuple[0], image_and_rect_tuple[1])"); m.def("get_histogram", &py_get_histogram, py::arg("img"), py::arg("hist_size")); m.def("get_histogram", &py_get_histogram, py::arg("img"), py::arg("hist_size")); m.def("get_histogram", &py_get_histogram, py::arg("img"), py::arg("hist_size")); m.def("get_histogram", &py_get_histogram, py::arg("img"), py::arg("hist_size"), "ensures \n\ - Returns a numpy array, HIST, that contains a histogram of the pixels in img. \n\ In particular, we will have: \n\ - len(HIST) == hist_size \n\ - for all valid i: \n\ - HIST[i] == the number of times a pixel with intensity i appears in img." /*! ensures - Returns a numpy array, HIST, that contains a histogram of the pixels in img. In particular, we will have: - len(HIST) == hist_size - for all valid i: - HIST[i] == the number of times a pixel with intensity i appears in img. !*/ ); m.def("tile_images", py_tile_images, py::arg("images"), "requires \n\ - images is a list of numpy arrays that can be interpreted as images. They \n\ must all be the same type of image as well. \n\ ensures \n\ - This function takes the given images and tiles them into a single large \n\ square image and returns this new big tiled image. Therefore, it is a \n\ useful method to visualize many small images at once." /*! requires - images is a list of numpy arrays that can be interpreted as images. They must all be the same type of image as well. ensures - This function takes the given images and tiles them into a single large square image and returns this new big tiled image. Therefore, it is a useful method to visualize many small images at once. !*/ ); docs = "Returns a histogram equalized version of img."; m.def("equalize_histogram", &py_equalize_histogram, py::arg("img")); m.def("equalize_histogram", &py_equalize_histogram, docs, py::arg("img")); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true); m.def("min_barrier_distance", &py_mbd2, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true, "requires \n\ - iterations > 0 \n\ ensures \n\ - This function implements the salient object detection method described in the paper: \n\ \"Minimum barrier salient object detection at 80 fps\" by Zhang, Jianming, et al. \n\ In particular, we compute the minimum barrier distance between the borders of \n\ the image and all the other pixels. The resulting image is returned. Note that \n\ the paper talks about a bunch of other things you could do beyond computing \n\ the minimum barrier distance, but this function doesn't do any of that. It's \n\ just the vanilla MBD. \n\ - We will perform iterations iterations of MBD passes over the image. Larger \n\ values might give better results but run slower. \n\ - During each MBD iteration we make raster scans over the image. These pass \n\ from top->bottom, bottom->top, left->right, and right->left. If \n\ do_left_right_scans==false then the left/right passes are not executed. \n\ Skipping them makes the algorithm about 2x faster but might reduce the \n\ quality of the output." /*! requires - iterations > 0 ensures - This function implements the salient object detection method described in the paper: "Minimum barrier salient object detection at 80 fps" by Zhang, Jianming, et al. In particular, we compute the minimum barrier distance between the borders of the image and all the other pixels. The resulting image is returned. Note that the paper talks about a bunch of other things you could do beyond computing the minimum barrier distance, but this function doesn't do any of that. It's just the vanilla MBD. - We will perform iterations iterations of MBD passes over the image. Larger values might give better results but run slower. - During each MBD iteration we make raster scans over the image. These pass from top->bottom, bottom->top, left->right, and right->left. If do_left_right_scans==false then the left/right passes are not executed. Skipping them makes the algorithm about 2x faster but might reduce the quality of the output. !*/ ); m.def("normalize_image_gradients", normalize_image_gradients>, py::arg("img1"), py::arg("img2")); m.def("normalize_image_gradients", normalize_image_gradients>, py::arg("img1"), py::arg("img2"), "requires \n\ - img1 and img2 have the same dimensions. \n\ ensures \n\ - This function assumes img1 and img2 are the two gradient images produced by a \n\ function like sobel_edge_detector(). It then unit normalizes the gradient \n\ vectors. That is, for all valid r and c, this function ensures that: \n\ - img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1 \n\ unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero."); /*! requires - img1 and img2 have the same dimensions. ensures - This function assumes img1 and img2 are the two gradient images produced by a function like sobel_edge_detector(). It then unit normalizes the gradient vectors. That is, for all valid r and c, this function ensures that: - img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1 unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero. !*/ m.def("remove_incoherent_edge_pixels", &py_remove_incoherent_edge_pixels, py::arg("line"), py::arg("horz_gradient"), py::arg("vert_gradient"), py::arg("angle_thresh"), "requires \n\ - horz_gradient and vert_gradient have the same dimensions. \n\ - horz_gradient and vert_gradient represent unit normalized vectors. That is, \n\ you should have called normalize_image_gradients(horz_gradient,vert_gradient) \n\ or otherwise caused all the gradients to have unit norm. \n\ - for all valid i: \n\ get_rect(horz_gradient).contains(line[i]) \n\ ensures \n\ - This routine looks at all the points in the given line and discards the ones that \n\ have outlying gradient directions. To be specific, this routine returns a set \n\ of points PTS such that: \n\ - for all valid i,j: \n\ - The difference in angle between the gradients for PTS[i] and PTS[j] is \n\ less than angle_threshold degrees. \n\ - len(PTS) <= len(line) \n\ - PTS is just line with some elements removed." ); /*! requires - horz_gradient and vert_gradient have the same dimensions. - horz_gradient and vert_gradient represent unit normalized vectors. That is, you should have called normalize_image_gradients(horz_gradient,vert_gradient) or otherwise caused all the gradients to have unit norm. - for all valid i: get_rect(horz_gradient).contains(line[i]) ensures - This routine looks at all the points in the given line and discards the ones that have outlying gradient directions. To be specific, this routine returns a set of points PTS such that: - for all valid i,j: - The difference in angle between the gradients for PTS[i] and PTS[j] is less than angle_threshold degrees. - len(PTS) <= len(line) - PTS is just line with some elements removed. !*/ py::register_exception(m, "no_convex_quadrilateral"); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns")); m.def("extract_image_4points", &py_extract_image_4points, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"), "requires \n\ - corners is a list of dpoint or line objects. \n\ - len(corners) == 4 \n\ - rows >= 0 \n\ - columns >= 0 \n\ ensures \n\ - The returned image has the given number of rows and columns. \n\ - if (corners contains dpoints) then \n\ - The 4 points in corners define a convex quadrilateral and this function \n\ extracts that part of the input image img and returns it. Therefore, \n\ each corner of the quadrilateral is associated to a corner of the \n\ extracted image and bilinear interpolation and a projective mapping is \n\ used to transform the pixels in the quadrilateral into the output image. \n\ To determine which corners of the quadrilateral map to which corners of \n\ the returned image we fit the tightest possible rectangle to the \n\ quadrilateral and map its vertices to their nearest rectangle corners. \n\ These corners are then trivially mapped to the output image (i.e. upper \n\ left corner to upper left corner, upper right corner to upper right \n\ corner, etc.). \n\ - else \n\ - This routine finds the 4 intersecting points of the given lines which \n\ form a convex quadrilateral and uses them as described above to extract \n\ an image. i.e. It just then calls: extract_image_4points(img, \n\ intersections_between_lines, rows, columns). \n\ - If no convex quadrilateral can be made from the given lines then this \n\ routine throws no_convex_quadrilateral." /*! requires - corners is a list of dpoint or line objects. - len(corners) == 4 - rows >= 0 - columns >= 0 ensures - The returned image has the given number of rows and columns. - if (corners contains dpoints) then - The 4 points in corners define a convex quadrilateral and this function extracts that part of the input image img and returns it. Therefore, each corner of the quadrilateral is associated to a corner of the extracted image and bilinear interpolation and a projective mapping is used to transform the pixels in the quadrilateral into the output image. To determine which corners of the quadrilateral map to which corners of the returned image we fit the tightest possible rectangle to the quadrilateral and map its vertices to their nearest rectangle corners. These corners are then trivially mapped to the output image (i.e. upper left corner to upper left corner, upper right corner to upper right corner, etc.). - else - This routine finds the 4 intersecting points of the given lines which form a convex quadrilateral and uses them as described above to extract an image. i.e. It just then calls: extract_image_4points(img, intersections_between_lines, rows, columns). - If no convex quadrilateral can be made from the given lines then this routine throws no_convex_quadrilateral. !*/ ); }