AshanGimhana commited on
Commit
59b61b8
·
verified ·
1 Parent(s): e5c12a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -132
app.py CHANGED
@@ -1,146 +1,77 @@
1
  import gradio as gr
 
 
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import cv2
3
+ import insightface
4
  import numpy as np
5
+ import gradio.components as gr_comp
 
 
6
 
7
+ # Load the insightface model once
8
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cv2.cuda.getCudaEnabledDeviceCount() > 0 else ["CPUExecutionProvider"]
9
+ model_path = '/content/inswapper_128.onnx'
10
+ model_swap_insightface = insightface.model_zoo.get_model(model_path, providers=providers)
11
 
12
+ # Prepare the FaceAnalysis model once
13
+ FACE_ANALYSER = insightface.app.FaceAnalysis(
14
+ name="buffalo_l",
15
+ root=".", providers=providers, allowed_modules=["landmark_3d_68", "landmark_2d_106", "detection", "recognition"]
16
+ )
17
+ FACE_ANALYSER.prepare(ctx_id=0 if cv2.cuda.getCudaEnabledDeviceCount() > 0 else -1, det_size=(768, 512))
 
 
18
 
19
+ # Function to update template choices based on gender
20
+ def update_templates(gender):
21
+ if gender == 'Male':
22
+ return gr.Dropdown.update(choices=['Boy Template 1.JPG', 'Boy Template 2.JPG', 'Boy Template 3.JPG'])
23
+ elif gender == 'Female':
24
+ return gr.Dropdown.update(choices=['Girl Template 1.JPG', 'Girl Template 2.JPG', 'Girl Template 3.JPG'])
25
+ else:
26
+ return gr.Dropdown.update(choices=[])
27
 
28
+ # Main function for face swapping
29
+ def face_swap_and_merge(src_image, gender, template_choice):
30
+ # Resize the source image to 700x400 for uniform processing
31
+ src_image = cv2.resize(src_image, (400, 600))
32
 
33
+ template_image_path = f'/content/{template_choice}'
34
+ template_image = cv2.imread(template_image_path, cv2.IMREAD_UNCHANGED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ # Resize the template image to 700x400 for uniform processing
37
+ template_image = cv2.resize(template_image, (400, 600))
 
 
 
38
 
39
+ src_faces = FACE_ANALYSER.get(src_image)
40
+ template_faces = FACE_ANALYSER.get(template_image)
 
 
 
 
41
 
42
+ img_fake = model_swap_insightface.get(img=template_image, target_face=template_faces[0], source_face=src_faces[0], paste_back=True)
43
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB)
 
 
44
 
45
+ return img_fake_rgb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ # Function to clear only the output image
48
+ def clear_output():
49
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ # Function to clear all inputs and outputs
52
+ def clear_all():
53
+ return None, None, None, None
54
+
55
+ # Create Gradio interface with title and theme
56
+ with gr.Blocks(theme='upsatwal/mlsc_tiet') as iface:
57
+ gr.Markdown("# Face Changer")
58
+ gr.Markdown(" ")
59
+
60
+ src_image = gr.Image(type="numpy", label="Input Image")
61
+ gender = gr.Dropdown(["Male", "Female"], label="Select Gender", interactive=True)
62
+ template_choice = gr.Dropdown([], label="Select Template", interactive=True)
63
+
64
+ gender.change(fn=update_templates, inputs=gender, outputs=template_choice)
65
+
66
+ result_image = gr.Image(label="Output Image")
67
+
68
+ submit_button = gr.Button("Submit")
69
+ submit_button.click(fn=face_swap_and_merge, inputs=[src_image, gender, template_choice], outputs=result_image)
70
 
71
+ clear_output_button = gr.Button("Clear Output")
72
+ clear_output_button.click(fn=clear_output, inputs=[], outputs=result_image)
73
+
74
+ clear_all_button = gr.Button("Clear All")
75
+ clear_all_button.click(fn=clear_all, inputs=[], outputs=[src_image, gender, template_choice, result_image])
76
+
77
+ iface.launch(debug=True)