Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import shap
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Load model and tokenizer with caching
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
13 |
+
return tokenizer, model
|
14 |
+
|
15 |
+
tokenizer, model = load_model()
|
16 |
+
|
17 |
+
# Define prediction function
|
18 |
+
def predict(texts):
|
19 |
+
processed_texts = []
|
20 |
+
for text in texts:
|
21 |
+
processed_texts.append(text if not isinstance(text, list)
|
22 |
+
else tokenizer.convert_tokens_to_string(text))
|
23 |
+
|
24 |
+
inputs = tokenizer(
|
25 |
+
processed_texts,
|
26 |
+
return_tensors="pt",
|
27 |
+
padding=True,
|
28 |
+
truncation=True,
|
29 |
+
max_length=512,
|
30 |
+
add_special_tokens=True
|
31 |
+
)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
|
36 |
+
return torch.nn.functional.softmax(outputs.logits, dim=-1).numpy()
|
37 |
+
|
38 |
+
# Initialize SHAP components
|
39 |
+
output_names = [model.config.id2label[i] for i in range(5)]
|
40 |
+
masker = shap.maskers.Text(tokenizer=tokenizer, mask_token=tokenizer.mask_token, collapse_mask_token=True)
|
41 |
+
explainer = shap.Explainer(predict, masker, output_names=output_names)
|
42 |
+
|
43 |
+
# Streamlit UI
|
44 |
+
st.title("π― BERT Sentiment Analysis with SHAP")
|
45 |
+
st.markdown("""
|
46 |
+
**How it works:**
|
47 |
+
1. Enter text in the box below
|
48 |
+
2. See predicted sentiment (1-5 stars)
|
49 |
+
3. View confidence scores and word-level explanations
|
50 |
+
""")
|
51 |
+
|
52 |
+
text_input = st.text_area("Input Text", placeholder="Enter text to analyze...", height=100)
|
53 |
+
|
54 |
+
if st.button("Analyze Sentiment"):
|
55 |
+
if text_input.strip():
|
56 |
+
with st.spinner("Analyzing..."):
|
57 |
+
# Get predictions
|
58 |
+
probabilities = predict([text_input])[0]
|
59 |
+
predicted_class = np.argmax(probabilities)
|
60 |
+
|
61 |
+
# Display results
|
62 |
+
st.subheader("π Results")
|
63 |
+
cols = st.columns(2)
|
64 |
+
cols[0].metric("Predicted Sentiment", output_names[predicted_class])
|
65 |
+
|
66 |
+
with cols[1]:
|
67 |
+
st.markdown("**Confidence Scores**")
|
68 |
+
for i, (label, score) in enumerate(zip(output_names, probabilities)):
|
69 |
+
st.progress(score, text=f"{label}: {score:.1%}")
|
70 |
+
|
71 |
+
# Generate SHAP explanations
|
72 |
+
st.subheader("π Explanation")
|
73 |
+
st.markdown("""
|
74 |
+
**Word impacts**
|
75 |
+
Red β Increases score | Blue β Decreases score
|
76 |
+
Intensity shows magnitude of impact
|
77 |
+
""")
|
78 |
+
|
79 |
+
shap_values = explainer([text_input])
|
80 |
+
|
81 |
+
# Create tabs for each sentiment class
|
82 |
+
tabs = st.tabs(output_names)
|
83 |
+
for i, tab in enumerate(tabs):
|
84 |
+
with tab:
|
85 |
+
fig = shap.plots.text(shap_values[:, :, i], display=False)
|
86 |
+
st.pyplot(fig)
|
87 |
+
plt.close()
|
88 |
+
else:
|
89 |
+
st.warning("Please enter some text to analyze")
|
90 |
+
|
91 |
+
st.markdown("---")
|
92 |
+
st.markdown("Example texts to try:")
|
93 |
+
examples = st.columns(4)
|
94 |
+
example_texts = [
|
95 |
+
"This product exceeded all my expectations!",
|
96 |
+
"Terrible customer service experience.",
|
97 |
+
"The movie was okay, nothing special.",
|
98 |
+
"You are kinda cool"
|
99 |
+
]
|
100 |
+
|
101 |
+
for col, text in zip(examples, example_texts):
|
102 |
+
with col:
|
103 |
+
if st.button(text, use_container_width=True):
|
104 |
+
st.session_state.last_input = text
|
105 |
+
|
106 |
+
if 'last_input' in st.session_state:
|
107 |
+
text_input = st.text_area("", value=st.session_state.last_input, height=100)
|