Ashishdubey1974's picture
Deploy deepfake voice detection app
d8240b4
import os
import torch
import gradio as gr
import numpy as np
import librosa
import soundfile as sf
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
from pydub import AudioSegment
import tempfile
import matplotlib
matplotlib.use('Agg')
# Constants
MODEL_ID = "MelodyMachine/Deepfake-audio-detection-V2"
SAMPLE_RATE = 16000
MAX_DURATION = 30 # maximum audio duration in seconds
class DeepfakeDetector:
def __init__(self, model_id=MODEL_ID):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
print(f"Loading model from {model_id}...")
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id).to(self.device)
print("Model loaded successfully!")
# Labels for classification
self.id2label = {0: "Real", 1: "Deepfake"}
def preprocess_audio(self, audio_path):
"""Process audio file to match model requirements."""
try:
# Load audio file
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE, mono=True)
# Trim silence from the beginning and end
y, _ = librosa.effects.trim(y, top_db=20)
# If audio is longer than MAX_DURATION seconds, take the first MAX_DURATION seconds
if len(y) > MAX_DURATION * SAMPLE_RATE:
y = y[:MAX_DURATION * SAMPLE_RATE]
return y
except Exception as e:
raise ValueError(f"Error preprocessing audio: {str(e)}")
def detect(self, audio_path):
"""Detect if audio is real or deepfake."""
try:
# Preprocess audio
audio_array = self.preprocess_audio(audio_path)
# Extract features
inputs = self.feature_extractor(
audio_array,
sampling_rate=SAMPLE_RATE,
return_tensors="pt",
padding=True
).to(self.device)
# Get prediction
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
predictions = torch.softmax(logits, dim=1)
# Get results
predicted_class = torch.argmax(predictions, dim=1).item()
confidence = predictions[0][predicted_class].item()
result = {
"prediction": self.id2label[predicted_class],
"confidence": float(confidence),
"probabilities": {
"Real": float(predictions[0][0].item()),
"Deepfake": float(predictions[0][1].item())
}
}
return result
except Exception as e:
raise ValueError(f"Error during detection: {str(e)}")
def convert_audio(input_file):
"""Convert the audio file to the required format."""
# Create temp file with .wav extension
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, "temp_audio_file.wav")
# Handle various input formats
if input_file.endswith('.mp3'):
audio = AudioSegment.from_mp3(input_file)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(SAMPLE_RATE) # Set sample rate
audio.export(temp_path, format="wav")
elif input_file.endswith('.wav'):
audio = AudioSegment.from_wav(input_file)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(SAMPLE_RATE) # Set sample rate
audio.export(temp_path, format="wav")
elif input_file.endswith('.ogg'):
audio = AudioSegment.from_ogg(input_file)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(SAMPLE_RATE) # Set sample rate
audio.export(temp_path, format="wav")
elif input_file.endswith('.flac'):
audio = AudioSegment.from_file(input_file, format="flac")
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(SAMPLE_RATE) # Set sample rate
audio.export(temp_path, format="wav")
else:
# Try to convert using pydub's generic from_file
try:
audio = AudioSegment.from_file(input_file)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(SAMPLE_RATE) # Set sample rate
audio.export(temp_path, format="wav")
except:
raise ValueError(f"Unsupported audio format for file: {input_file}")
return temp_path
def detect_deepfake(audio_file, detector):
"""Process audio and detect if it's a deepfake."""
if audio_file is None:
return {
"error": "Please upload an audio file."
}
try:
# Convert audio to required format
processed_audio = convert_audio(audio_file)
# Detect deepfake
result = detector.detect(processed_audio)
# Create a visually appealing output
prediction = result["prediction"]
confidence = result["confidence"] * 100
# Prepare visualization data
labels = list(result["probabilities"].keys())
values = list(result["probabilities"].values())
output = {
"prediction": prediction,
"confidence": f"{confidence:.2f}%",
"chart_labels": labels,
"chart_values": values
}
# Create result text with confidence
result_text = f"Prediction: {prediction} (Confidence: {confidence:.2f}%)"
return result_text, output
except Exception as e:
return f"Error: {str(e)}", None
def create_interface():
"""Create Gradio interface for the application."""
# Initialize the deepfake detector
detector = DeepfakeDetector()
with gr.Blocks(title="Deepfake Voice Detector") as interface:
gr.Markdown("""
# Deepfake Voice Detector
Upload an audio file to check if it's a real human voice or an AI-generated deepfake.
**Model:** MelodyMachine/Deepfake-audio-detection-V2 (Accuracy: 99.73%)
""")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
type="filepath",
label="Upload Audio File",
sources=["upload", "microphone"]
)
submit_btn = gr.Button("Analyze Audio", variant="primary")
with gr.Column(scale=1):
result_text = gr.Textbox(label="Result")
# Visualization component
with gr.Accordion("Detailed Analysis", open=False):
gr.Markdown("### Confidence Scores")
confidence_plot = gr.Plot(label="Confidence Scores")
# Process function for the submit button
def process_and_visualize(audio_file):
result_text, output = detect_deepfake(audio_file, detector)
if output:
# Create bar chart visualization
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(6, 4))
bars = ax.bar(output["chart_labels"], output["chart_values"], color=['green', 'red'])
# Add percentage labels on top of each bar
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.02,
f'{height*100:.1f}%', ha='center', va='bottom')
ax.set_ylim(0, 1.1)
ax.set_title('Confidence Scores')
ax.set_ylabel('Probability')
return result_text, fig
else:
return result_text, None
submit_btn.click(
process_and_visualize,
inputs=[audio_input],
outputs=[result_text, confidence_plot]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch()