Spaces:
Runtime error
Runtime error
import os | |
import math | |
import gradio as gr | |
import numpy as np | |
import torch | |
import safetensors.torch as sf | |
import db_examples | |
import datetime | |
from pathlib import Path | |
from PIL import Image | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline | |
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from briarmbg import BriaRMBG | |
from enum import Enum | |
from torch.hub import download_url_to_file | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_AVAILABLE = True | |
print("xformers is available - Using memory efficient attention") | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
print("xformers not available - Using default attention") | |
# 'stablediffusionapi/realistic-vision-v51' | |
# 'runwayml/stable-diffusion-v1-5' | |
sd15_name = 'stablediffusionapi/realistic-vision-v51' | |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") | |
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
# Change UNet | |
with torch.no_grad(): | |
new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) | |
new_conv_in.weight.zero_() | |
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) | |
new_conv_in.bias = unet.conv_in.bias | |
unet.conv_in = new_conv_in | |
unet_original_forward = unet.forward | |
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): | |
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) | |
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) | |
new_sample = torch.cat([sample, c_concat], dim=1) | |
kwargs['cross_attention_kwargs'] = {} | |
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) | |
unet.forward = hooked_unet_forward | |
# Load | |
model_path = './models/iclight_sd15_fbc.safetensors' | |
if not os.path.exists(model_path): | |
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path) | |
# Device and dtype setup | |
device = torch.device('cuda') | |
dtype = torch.float16 # RTX 2070 works well with float16 | |
# Memory optimizations for RTX 2070 | |
torch.backends.cudnn.benchmark = True | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# Set a smaller attention slice size for RTX 2070 | |
torch.backends.cuda.max_split_size_mb = 512 | |
# Move models to device with consistent dtype | |
text_encoder = text_encoder.to(device=device, dtype=dtype) | |
vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16 | |
unet = unet.to(device=device, dtype=dtype) | |
rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32 | |
# Update the state dict merging to use correct dtype | |
sd_offset = sf.load_file(model_path) | |
sd_origin = unet.state_dict() | |
sd_merged = {k: sd_origin[k] + sd_offset[k].to(device=device, dtype=dtype) for k in sd_origin.keys()} | |
unet.load_state_dict(sd_merged, strict=True) | |
del sd_offset, sd_origin, sd_merged | |
def enable_efficient_attention(): | |
if XFORMERS_AVAILABLE: | |
try: | |
# RTX 2070 specific settings | |
unet.set_use_memory_efficient_attention_xformers(True) | |
vae.set_use_memory_efficient_attention_xformers(True) | |
print("Enabled xformers memory efficient attention") | |
except Exception as e: | |
print(f"Xformers error: {e}") | |
print("Falling back to sliced attention") | |
# Use sliced attention for RTX 2070 | |
unet.set_attention_slice_size(4) | |
vae.set_attention_slice_size(4) | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
else: | |
# Fallback for when xformers is not available | |
print("Using sliced attention") | |
unet.set_attention_slice_size(4) | |
vae.set_attention_slice_size(4) | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
# Add memory clearing function | |
def clear_memory(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
# Enable efficient attention | |
enable_efficient_attention() | |
# Samplers | |
ddim_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
euler_a_scheduler = EulerAncestralDiscreteScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1 | |
) | |
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
algorithm_type="sde-dpmsolver++", | |
use_karras_sigmas=True, | |
steps_offset=1 | |
) | |
# Pipelines | |
t2i_pipe = StableDiffusionPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=dpmpp_2m_sde_karras_scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None, | |
image_encoder=None | |
) | |
i2i_pipe = StableDiffusionImg2ImgPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=dpmpp_2m_sde_karras_scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None, | |
image_encoder=None | |
) | |
def encode_prompt_inner(txt: str): | |
max_length = tokenizer.model_max_length | |
chunk_length = tokenizer.model_max_length - 2 | |
id_start = tokenizer.bos_token_id | |
id_end = tokenizer.eos_token_id | |
id_pad = id_end | |
def pad(x, p, i): | |
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) | |
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] | |
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] | |
chunks = [pad(ck, id_pad, max_length) for ck in chunks] | |
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) | |
conds = text_encoder(token_ids).last_hidden_state | |
return conds | |
def encode_prompt_pair(positive_prompt, negative_prompt): | |
c = encode_prompt_inner(positive_prompt) | |
uc = encode_prompt_inner(negative_prompt) | |
c_len = float(len(c)) | |
uc_len = float(len(uc)) | |
max_count = max(c_len, uc_len) | |
c_repeat = int(math.ceil(max_count / c_len)) | |
uc_repeat = int(math.ceil(max_count / uc_len)) | |
max_chunk = max(len(c), len(uc)) | |
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] | |
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] | |
c = torch.cat([p[None, ...] for p in c], dim=1) | |
uc = torch.cat([p[None, ...] for p in uc], dim=1) | |
return c, uc | |
def pytorch2numpy(imgs, quant=True): | |
results = [] | |
for x in imgs: | |
y = x.movedim(0, -1) | |
if quant: | |
y = y * 127.5 + 127.5 | |
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
else: | |
y = y * 0.5 + 0.5 | |
y = y.detach().float().cpu().numpy().clip(0, 1) | |
results.append(y) | |
return results | |
def numpy2pytorch(imgs): | |
h = torch.from_numpy(np.stack(imgs, axis=0)).float() * 2.0 - 1.0 | |
h = h.movedim(-1, 1) | |
return h | |
def resize_and_center_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
original_width, original_height = pil_image.size | |
scale_factor = max(target_width / original_width, target_height / original_height) | |
resized_width = int(round(original_width * scale_factor)) | |
resized_height = int(round(original_height * scale_factor)) | |
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) | |
left = (resized_width - target_width) / 2 | |
top = (resized_height - target_height) / 2 | |
right = (resized_width + target_width) / 2 | |
bottom = (resized_height + target_height) / 2 | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return np.array(cropped_image) | |
def resize_without_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(resized_image) | |
def run_rmbg(img, sigma=0.0): | |
H, W, C = img.shape | |
assert C == 3 | |
k = (256.0 / float(H * W)) ** 0.5 | |
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) | |
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32) | |
alpha = rmbg(feed)[0][0] | |
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") | |
alpha = alpha.movedim(1, -1)[0] | |
alpha = alpha.detach().float().cpu().numpy().clip(0, 1) | |
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha | |
return result.clip(0, 255).astype(np.uint8), alpha | |
def resize_to_match(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(resized_image) | |
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
clear_memory() | |
bg_source = BGSource(bg_source) | |
# Get background image dimensions | |
image_height, image_width, _ = input_bg.shape | |
# Adjust dimensions to the nearest multiple of 64 | |
image_width = (image_width // 64) * 64 | |
image_height = (image_height // 64) * 64 | |
# Resize images without cropping | |
fg = resize_to_match(input_fg, image_width, image_height) | |
bg = resize_to_match(input_bg, image_width, image_height) | |
if bg_source == BGSource.UPLOAD: | |
pass | |
elif bg_source == BGSource.UPLOAD_FLIP: | |
input_bg = np.fliplr(input_bg) | |
elif bg_source == BGSource.GREY: | |
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 | |
elif bg_source == BGSource.LEFT: | |
gradient = np.linspace(224, 32, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.RIGHT: | |
gradient = np.linspace(32, 224, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.TOP: | |
gradient = np.linspace(224, 32, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.BOTTOM: | |
gradient = np.linspace(32, 224, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
else: | |
raise 'Wrong background source!' | |
rng = torch.Generator(device=device).manual_seed(seed) | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) | |
latents = t2i_pipe( | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
# Use quant=False to keep high-precision float32 images | |
pixels = pytorch2numpy(pixels, quant=False) | |
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
latents = latents.to(device=unet.device, dtype=unet.dtype) | |
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
latents = i2i_pipe( | |
image=latents, | |
strength=highres_denoise, | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=int(round(steps / highres_denoise)), | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels, quant=False) | |
clear_memory() | |
return pixels, [fg, bg] | |
# Add save function | |
def save_images(images, prefix="relight"): | |
# Create output directory if it doesn't exist | |
output_dir = Path("outputs") | |
output_dir.mkdir(exist_ok=True) | |
# Create timestamp for unique filenames | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
saved_paths = [] | |
for i, img in enumerate(images): | |
if isinstance(img, np.ndarray): | |
# Convert to PIL Image if numpy array | |
img = Image.fromarray(img.astype(np.uint8)) | |
# Create filename with timestamp | |
filename = f"{prefix}_{timestamp}_{i+1}.png" | |
filepath = output_dir / filename | |
# Save image | |
img.save(filepath) | |
saved_paths.append(filepath) | |
return saved_paths | |
# Modify process_relight to save images | |
def process_relight(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
# Extract foreground and background images from the image editor | |
input_fg = image_editor_output["layers"][1]["image"] | |
input_bg = image_editor_output["layers"][0]["image"] | |
input_fg, matting = run_rmbg(input_fg) | |
results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source) | |
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results] | |
final_results = results + extra_images | |
# Save the generated images | |
save_images(results, prefix="relight") | |
return results | |
# Modify process_normal to save images | |
def process_normal(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
# Extract foreground and background images from the image editor | |
input_fg = image_editor_output["layers"][1]["image"] | |
input_bg = image_editor_output["layers"][0]["image"] | |
input_fg, matting = run_rmbg(input_fg, sigma=16) | |
print('left ...') | |
left = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.LEFT.value)[0][0] | |
print('right ...') | |
right = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.RIGHT.value)[0][0] | |
print('bottom ...') | |
bottom = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.BOTTOM.value)[0][0] | |
print('top ...') | |
top = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.TOP.value)[0][0] | |
inner_results = [left * 2.0 - 1.0, right * 2.0 - 1.0, bottom * 2.0 - 1.0, top * 2.0 - 1.0] | |
ambient = (left + right + bottom + top) / 4.0 | |
h, w, _ = ambient.shape | |
matting = resize_and_center_crop((matting[..., 0] * 255.0).clip(0, 255).astype(np.uint8), w, h).astype(np.float32)[..., None] / 255.0 | |
def safa_divide(a, b): | |
e = 1e-5 | |
return ((a + e) / (b + e)) - 1.0 | |
left = safa_divide(left, ambient) | |
right = safa_divide(right, ambient) | |
bottom = safa_divide(bottom, ambient) | |
top = safa_divide(top, ambient) | |
u = (right - left) * 0.5 | |
v = (top - bottom) * 0.5 | |
sigma = 10.0 | |
u = np.mean(u, axis=2) | |
v = np.mean(v, axis=2) | |
h = (1.0 - u ** 2.0 - v ** 2.0).clip(0, 1e5) ** (0.5 * sigma) | |
z = np.zeros_like(h) | |
normal = np.stack([u, v, h], axis=2) | |
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 | |
normal = normal * matting + np.stack([z, z, 1 - z], axis=2) * (1 - matting) | |
results = [normal, left, right, bottom, top] + inner_results | |
results = [(x * 127.5 + 127.5).clip(0, 255).astype(np.uint8) for x in results] | |
# Save the generated images | |
save_images(results, prefix="normal") | |
return results | |
quick_prompts = [ | |
'beautiful woman', | |
'handsome man', | |
'beautiful woman, cinematic lighting', | |
'handsome man, cinematic lighting', | |
'beautiful woman, natural lighting', | |
'handsome man, natural lighting', | |
'beautiful woman, neo punk lighting, cyberpunk', | |
'handsome man, neo punk lighting, cyberpunk', | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
class BGSource(Enum): | |
UPLOAD = "Use Background Image" | |
UPLOAD_FLIP = "Use Flipped Background Image" | |
LEFT = "Left Light" | |
RIGHT = "Right Light" | |
TOP = "Top Light" | |
BOTTOM = "Bottom Light" | |
GREY = "Ambient" | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)") | |
gr.Markdown("πΎ Generated images are automatically saved to 'outputs' folder") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
image_editor = gr.ImageEditor(label="Edit Images", type="pil") | |
prompt = gr.Textbox(label="Prompt") | |
bg_source = gr.Radio(choices=[e.value for e in BGSource], | |
value=BGSource.UPLOAD.value, | |
label="Background Source", type='value') | |
example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt]) | |
bg_gallery = gr.Gallery(height=450, label='Background Quick List', value=db_examples.bg_samples, columns=5, allow_preview=False) | |
relight_button = gr.Button(value="Relight") | |
with gr.Group(): | |
with gr.Row(): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
seed = gr.Number(label="Seed", value=12345, precision=0) | |
with gr.Row(): | |
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) | |
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) | |
with gr.Accordion("Advanced options", open=False): | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01) | |
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01) | |
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
normal_button = gr.Button(value="Compute Normal (4x Slower)") | |
with gr.Column(): | |
result_gallery = gr.Image(height=832, label='Outputs') | |
with gr.Row(): | |
dummy_image_for_outputs = gr.Image(visible=False, label='Result') | |
gr.Examples( | |
fn=lambda *args: [args[-1]], | |
examples=db_examples.background_conditioned_examples, | |
inputs=[ | |
image_editor, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs | |
], | |
outputs=[result_gallery], | |
run_on_click=True, examples_per_page=1024 | |
) | |
ips = [image_editor, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source] | |
relight_button.click(fn=process_relight, inputs=ips, outputs=[result_gallery]) | |
normal_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery]) | |
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False) | |
def bg_gallery_selected(gal, evt: gr.SelectData): | |
return gal[evt.index]['name'] | |
bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=image_editor) | |
block.launch(server_name='0.0.0.0') | |