import os from typing import Union, Any, Tuple, Dict, List from unittest.mock import patch import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor from transformers.dynamic_module_utils import get_imports import importlib FLORENCE_CHECKPOINT = "microsoft/Florence-2-base" # FLORENCE_CHECKPOINT = "microsoft/Florence-2-large" FLORENCE_OBJECT_DETECTION_TASK = '' FLORENCE_DETAILED_CAPTION_TASK = '' FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '' FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = '' FLORENCE_DENSE_REGION_CAPTION_TASK = '' # Removing the unnecessary flash_attn import which causes issues on CPU or MPS backends def fixed_get_imports(filename) -> list[str]: if not str(filename).endswith("modeling_florence2.py"): return get_imports(filename) imports = get_imports(filename) imports.remove("flash_attn") return imports device = torch.device("cuda" if torch.cuda.is_available() else "cpu") with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement florence_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base",trust_remote_code=True).to(device) florence_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) def load_florence_model( device: torch.device, checkpoint: str = FLORENCE_CHECKPOINT ) -> Tuple[Any, Any]: with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): model = AutoModelForCausalLM.from_pretrained( checkpoint, trust_remote_code=True).to(device).eval() processor = AutoProcessor.from_pretrained( checkpoint, trust_remote_code=True) return model, processor def run_florence_inference( model: Any, processor: Any, device: torch.device, image: Image, task: str, text: str = "" ) -> Tuple[str, Dict]: prompt = task + text inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode( generated_ids, skip_special_tokens=False)[0] response = processor.post_process_generation( generated_text, task=task, image_size=image.size) return generated_text, response load_florence_model(device='cuda')