Spaces:
Runtime error
Runtime error
Update merged_files3.py
Browse files- merged_files3.py +23 -31
merged_files3.py
CHANGED
@@ -181,38 +181,30 @@ t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename=
|
|
181 |
sd15_name = 'stablediffusionapi/realistic-vision-v51'
|
182 |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
|
183 |
|
184 |
-
# Load models in sequence with memory clearing between loads
|
185 |
-
@spaces.GPU(duration=60)
|
186 |
-
@torch.inference_mode()
|
187 |
-
def load_models():
|
188 |
-
clear_memory()
|
189 |
-
|
190 |
-
global text_encoder, vae, unet, rmbg
|
191 |
-
|
192 |
-
# Load text encoder
|
193 |
-
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
|
194 |
-
text_encoder = text_encoder.to(device=device, dtype=dtype)
|
195 |
-
clear_memory()
|
196 |
-
|
197 |
-
# Load VAE
|
198 |
-
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
|
199 |
-
vae = vae.to(device=device, dtype=dtype)
|
200 |
-
clear_memory()
|
201 |
-
|
202 |
-
# Load UNet
|
203 |
-
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
|
204 |
-
unet = unet.to(device=device, dtype=dtype)
|
205 |
-
clear_memory()
|
206 |
-
|
207 |
-
# Load RMBG
|
208 |
-
rmbg = AutoModelForImageSegmentation.from_pretrained(
|
209 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
210 |
-
)
|
211 |
-
rmbg = rmbg.to(device=device, dtype=torch.float32)
|
212 |
-
clear_memory()
|
213 |
|
214 |
-
#
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
|
218 |
from transformers import T5EncoderModel
|
|
|
181 |
sd15_name = 'stablediffusionapi/realistic-vision-v51'
|
182 |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
# Load text encoder
|
186 |
+
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
|
187 |
+
text_encoder = text_encoder.to(device=device, dtype=dtype)
|
188 |
+
clear_memory()
|
189 |
+
|
190 |
+
# Load VAE
|
191 |
+
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
|
192 |
+
vae = vae.to(device=device, dtype=dtype)
|
193 |
+
clear_memory()
|
194 |
+
|
195 |
+
# Load UNet
|
196 |
+
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
|
197 |
+
unet = unet.to(device=device, dtype=dtype)
|
198 |
+
clear_memory()
|
199 |
+
|
200 |
+
# Load RMBG
|
201 |
+
rmbg = AutoModelForImageSegmentation.from_pretrained(
|
202 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
203 |
+
)
|
204 |
+
rmbg = rmbg.to(device=device, dtype=torch.float32)
|
205 |
+
clear_memory()
|
206 |
+
|
207 |
+
|
208 |
|
209 |
from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
|
210 |
from transformers import T5EncoderModel
|