Ashoka74 commited on
Commit
fe87a04
ยท
verified ยท
1 Parent(s): 4feb6b3

Update merged_files3.py

Browse files
Files changed (1) hide show
  1. merged_files3.py +23 -31
merged_files3.py CHANGED
@@ -181,38 +181,30 @@ t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename=
181
  sd15_name = 'stablediffusionapi/realistic-vision-v51'
182
  tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
183
 
184
- # Load models in sequence with memory clearing between loads
185
- @spaces.GPU(duration=60)
186
- @torch.inference_mode()
187
- def load_models():
188
- clear_memory()
189
-
190
- global text_encoder, vae, unet, rmbg
191
-
192
- # Load text encoder
193
- text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
194
- text_encoder = text_encoder.to(device=device, dtype=dtype)
195
- clear_memory()
196
-
197
- # Load VAE
198
- vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
199
- vae = vae.to(device=device, dtype=dtype)
200
- clear_memory()
201
-
202
- # Load UNet
203
- unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
204
- unet = unet.to(device=device, dtype=dtype)
205
- clear_memory()
206
-
207
- # Load RMBG
208
- rmbg = AutoModelForImageSegmentation.from_pretrained(
209
- "ZhengPeng7/BiRefNet", trust_remote_code=True
210
- )
211
- rmbg = rmbg.to(device=device, dtype=torch.float32)
212
- clear_memory()
213
 
214
- # Call load_models after device setup
215
- load_models()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
  from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
218
  from transformers import T5EncoderModel
 
181
  sd15_name = 'stablediffusionapi/realistic-vision-v51'
182
  tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
+ # Load text encoder
186
+ text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
187
+ text_encoder = text_encoder.to(device=device, dtype=dtype)
188
+ clear_memory()
189
+
190
+ # Load VAE
191
+ vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
192
+ vae = vae.to(device=device, dtype=dtype)
193
+ clear_memory()
194
+
195
+ # Load UNet
196
+ unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
197
+ unet = unet.to(device=device, dtype=dtype)
198
+ clear_memory()
199
+
200
+ # Load RMBG
201
+ rmbg = AutoModelForImageSegmentation.from_pretrained(
202
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
203
+ )
204
+ rmbg = rmbg.to(device=device, dtype=torch.float32)
205
+ clear_memory()
206
+
207
+
208
 
209
  from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
210
  from transformers import T5EncoderModel