Ashrafb commited on
Commit
2c151eb
1 Parent(s): 8f0fb7c

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +14 -131
main.py CHANGED
@@ -1,142 +1,25 @@
1
- from fastapi import FastAPI, UploadFile, File
2
- from fastapi.responses import FileResponse
3
  from fastapi.responses import HTMLResponse, FileResponse
4
  from fastapi.staticfiles import StaticFiles
5
- from typing import Tuple
6
- import cv2
7
- import fastai
8
- from fastai.vision import *
9
- from fastai.utils.mem import *
10
- from fastai.vision import open_image, load_learner, image, torch
11
- import numpy as np
12
- import urllib.request
13
- import PIL.Image
14
- from io import BytesIO
15
- import torchvision.transforms as T
16
- from PIL import Image
17
- import requests
18
- from io import BytesIO
19
- import fastai
20
- from fastai.vision import *
21
- from fastai.utils.mem import *
22
- from fastai.vision import open_image, load_learner, image, torch
23
- import numpy as np
24
- import urllib.request
25
- import PIL.Image
26
- from PIL import Image
27
- from io import BytesIO
28
- import torchvision.transforms as T
29
- import requests
30
- import model_loader
31
 
32
  app = FastAPI()
33
 
34
- # Download the model if not already downloaded
35
- MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1"
36
- MODEL_FILENAME = "ArtLine_920.pkl"
37
- if not os.path.exists(MODEL_FILENAME):
38
- model_loader.download_model(MODEL_URL, MODEL_FILENAME)
39
 
40
- # Load the model
41
- learn = model_loader.load_model(MODEL_FILENAME)
42
-
43
-
44
- class FeatureLoss(nn.Module):
45
- def __init__(self, m_feat, layer_ids, layer_wgts):
46
- super().__init__()
47
- self.m_feat = m_feat
48
- self.loss_features = [self.m_feat[i] for i in layer_ids]
49
- self.hooks = hook_outputs(self.loss_features, detach=False)
50
- self.wgts = layer_wgts
51
- self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
52
- ] + [f'gram_{i}' for i in range(len(layer_ids))]
53
-
54
- def make_features(self, x, clone=False):
55
- self.m_feat(x)
56
- return [(o.clone() if clone else o) for o in self.hooks.stored]
57
-
58
- def forward(self, input, target):
59
- out_feat = self.make_features(target, clone=True)
60
- in_feat = self.make_features(input)
61
- self.feat_losses = [base_loss(input,target)]
62
- self.feat_losses += [base_loss(f_in, f_out)*w
63
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
64
- self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
65
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
66
- self.metrics = dict(zip(self.metric_names, self.feat_losses))
67
- return sum(self.feat_losses)
68
-
69
- def __del__(self): self.hooks.remove()
70
-
71
- def add_margin(pil_img, top, right, bottom, left, color):
72
- width, height = pil_img.size
73
- new_width = width + right + left
74
- new_height = height + top + bottom
75
- result = Image.new(pil_img.mode, (new_width, new_height), color)
76
- result.paste(pil_img, (left, top))
77
- return result
78
-
79
-
80
-
81
-
82
-
83
- import gradio as gr
84
- import cv2
85
-
86
-
87
- def get_filename(prefix="sketch"):
88
- from datetime import datetime
89
- from pytz import timezone
90
- return datetime.now(timezone('Asia/Seoul')).strftime('sketch__%Y-%m-%d %H:%M:%S.jpg')
91
-
92
- def predict(img):
93
- img = PIL.Image.fromarray(img)
94
- img = add_margin(img, 250, 250, 250, 250, (255, 255, 255))
95
- img = np.array(img)
96
-
97
- h, w = img.shape[:-1]
98
- cv2.imwrite("test.jpg", img)
99
- img_test = open_image("test.jpg")
100
-
101
- p,img_hr,b = learn.predict(img_test)
102
-
103
- res = (img_hr / img_hr.max()).numpy()
104
- res = res[0] # take only first channel as result
105
- res = cv2.resize(res, (w,h))
106
-
107
- output_file = get_filename()
108
-
109
- cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50])
110
-
111
- return res, output_file
112
-
113
- @app.post("/predict/")
114
- async def predict(file: UploadFile = File(...)) -> Tuple[str, bytes]:
115
- contents = await file.read()
116
- img = cv2.imdecode(np.fromstring(contents, np.uint8), cv2.IMREAD_COLOR)
117
- img = PIL.Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
118
- img = add_margin(img, 250, 250, 250, 250, (255, 255, 255))
119
- img = np.array(img)
120
-
121
- h, w = img.shape[:-1]
122
- cv2.imwrite("test.jpg", img)
123
- img_test = open_image("test.jpg")
124
-
125
- p,img_hr,b = learn.predict(img_test)
126
-
127
- res = (img_hr / img_hr.max()).numpy()
128
- res = res[0] # take only first channel as result
129
- res = cv2.resize(res, (w,h))
130
-
131
- output_file = get_filename()
132
-
133
- cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50])
134
-
135
- return output_file, res.tobytes()
136
 
137
  app.mount("/", StaticFiles(directory="static", html=True), name="static")
138
 
139
  @app.get("/")
140
  def index() -> FileResponse:
141
- return FileResponse(path="/app/static/index.html", media_type="text/html")
142
-
 
1
+ from fastapi import FastAPI, File, UploadFile
2
+ from fastapi import FastAPI, File, UploadFile, Form, Request
3
  from fastapi.responses import HTMLResponse, FileResponse
4
  from fastapi.staticfiles import StaticFiles
5
+ from fastapi.templating import Jinja2Templates
6
+ from gradio_client import Client
7
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  app = FastAPI()
10
 
11
+ hf_token = os.environ.get('HF_TOKEN')
12
+ client = Client("https://ashrafb-image-to-sketch.hf.space/", hf_token=hf_token)
 
 
 
13
 
14
+ @app.post("/predict")
15
+ async def predict_sketch(file: UploadFile = File(...)):
16
+ content = await file.read()
17
+ # Call the Gradio client to get the sketch result
18
+ result = client.predict(content, api_name="/predict")
19
+ return {"sketch_image": result[0], "result_file": result[1]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  app.mount("/", StaticFiles(directory="static", html=True), name="static")
22
 
23
  @app.get("/")
24
  def index() -> FileResponse:
25
+ return FileResponse(path="/app/static/index.html", media_type="text/html")