from fastapi import FastAPI, UploadFile, File from fastapi.responses import FileResponse from fastapi.responses import HTMLResponse, FileResponse from fastapi.staticfiles import StaticFiles from typing import Tuple import cv2 import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from io import BytesIO import torchvision.transforms as T from PIL import Image import requests from io import BytesIO import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from PIL import Image from io import BytesIO import torchvision.transforms as T app = FastAPI() class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() def add_margin(pil_img, top, right, bottom, left, color): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result from fastapi import HTTPException from httpx import AsyncClient MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1" async def download_model(url: str, filename: str): async with AsyncClient() as client: response = await client.get(url) if response.status_code == 200: with open(filename, "wb") as f: f.write(response.content) else: raise HTTPException(status_code=response.status_code, detail="Failed to download model") # Define the function to download the model asynchronously async def setup_model(): await download_model(MODEL_URL, "ArtLine_920.pkl") # Run the setup function to download the model before the FastAPI app starts import asyncio loop = asyncio.get_event_loop() loop.run_until_complete(setup_model()) # Now load the learner once the model is downloaded path = Path(".") learn = load_learner(path, 'ArtLine_920.pkl') import gradio as gr import cv2 def get_filename(prefix="sketch"): from datetime import datetime from pytz import timezone return datetime.now(timezone('Asia/Seoul')).strftime('sketch__%Y-%m-%d %H:%M:%S.jpg') def predict(img): img = PIL.Image.fromarray(img) img = add_margin(img, 250, 250, 250, 250, (255, 255, 255)) img = np.array(img) h, w = img.shape[:-1] cv2.imwrite("test.jpg", img) img_test = open_image("test.jpg") p,img_hr,b = learn.predict(img_test) res = (img_hr / img_hr.max()).numpy() res = res[0] # take only first channel as result res = cv2.resize(res, (w,h)) output_file = get_filename() cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50]) return res, output_file @app.post("/predict/") async def predict(file: UploadFile = File(...)) -> Tuple[str, bytes]: contents = await file.read() img = cv2.imdecode(np.fromstring(contents, np.uint8), cv2.IMREAD_COLOR) img = PIL.Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) img = add_margin(img, 250, 250, 250, 250, (255, 255, 255)) img = np.array(img) h, w = img.shape[:-1] cv2.imwrite("test.jpg", img) img_test = open_image("test.jpg") p,img_hr,b = learn.predict(img_test) res = (img_hr / img_hr.max()).numpy() res = res[0] # take only first channel as result res = cv2.resize(res, (w,h)) output_file = get_filename() cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50]) return output_file, res.tobytes() app.mount("/", StaticFiles(directory="static", html=True), name="static") @app.get("/") def index() -> FileResponse: return FileResponse(path="/app/static/index.html", media_type="text/html")