hossay commited on
Commit
c3784e5
1 Parent(s): b4b4aa0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fastai
2
+ from fastai.vision import *
3
+ from fastai.utils.mem import *
4
+ from fastai.vision import open_image, load_learner, image, torch
5
+ import numpy as np
6
+ import urllib.request
7
+ import PIL.Image
8
+ from io import BytesIO
9
+ import torchvision.transforms as T
10
+ from PIL import Image
11
+ import requests
12
+ from io import BytesIO
13
+ import fastai
14
+ from fastai.vision import *
15
+ from fastai.utils.mem import *
16
+ from fastai.vision import open_image, load_learner, image, torch
17
+ import numpy as np
18
+ import urllib.request
19
+ import PIL.Image
20
+ from PIL import Image
21
+ from io import BytesIO
22
+ import torchvision.transforms as T
23
+
24
+ class FeatureLoss(nn.Module):
25
+ def __init__(self, m_feat, layer_ids, layer_wgts):
26
+ super().__init__()
27
+ self.m_feat = m_feat
28
+ self.loss_features = [self.m_feat[i] for i in layer_ids]
29
+ self.hooks = hook_outputs(self.loss_features, detach=False)
30
+ self.wgts = layer_wgts
31
+ self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
32
+ ] + [f'gram_{i}' for i in range(len(layer_ids))]
33
+
34
+ def make_features(self, x, clone=False):
35
+ self.m_feat(x)
36
+ return [(o.clone() if clone else o) for o in self.hooks.stored]
37
+
38
+ def forward(self, input, target):
39
+ out_feat = self.make_features(target, clone=True)
40
+ in_feat = self.make_features(input)
41
+ self.feat_losses = [base_loss(input,target)]
42
+ self.feat_losses += [base_loss(f_in, f_out)*w
43
+ for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
44
+ self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
45
+ for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
46
+ self.metrics = dict(zip(self.metric_names, self.feat_losses))
47
+ return sum(self.feat_losses)
48
+
49
+ def __del__(self): self.hooks.remove()
50
+
51
+ def add_margin(pil_img, top, right, bottom, left, color):
52
+ width, height = pil_img.size
53
+ new_width = width + right + left
54
+ new_height = height + top + bottom
55
+ result = Image.new(pil_img.mode, (new_width, new_height), color)
56
+ result.paste(pil_img, (left, top))
57
+ return result
58
+
59
+
60
+ MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1 "
61
+ urllib.request.urlretrieve(MODEL_URL, "ArtLine_920.pkl")
62
+ path = Path(".")
63
+ print(os.listdir('.'))
64
+ learn=load_learner(path, 'ArtLine_920.pkl')
65
+
66
+
67
+ import gradio as gr
68
+ import cv2
69
+
70
+
71
+ def get_filename(prefix="sketch"):
72
+ from datetime import datetime
73
+ from pytz import timezone
74
+ return datetime.now(timezone('Asia/Seoul')).strftime('sketch__%Y-%m-%d %H:%M:%S.jpg')
75
+
76
+ def predict(img):
77
+ img = PIL.Image.fromarray(img)
78
+ img = add_margin(img, 250, 250, 250, 250, (255, 255, 255))
79
+ img = np.array(img)
80
+
81
+ h, w = img.shape[:-1]
82
+ cv2.imwrite("test.jpg", img)
83
+ img_test = open_image("test.jpg")
84
+
85
+ p,img_hr,b = learn.predict(img_test)
86
+
87
+ res = (img_hr / img_hr.max()).numpy()
88
+ res = res[0] # take only first channel as result
89
+ res = cv2.resize(res, (w,h))
90
+
91
+ output_file = get_filename()
92
+
93
+ cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50])
94
+
95
+ return res, output_file
96
+
97
+ gr.Interface(predict,
98
+ inputs="image",
99
+ outputs=[gr.Image(label="Sketch Image"), gr.File(label="Result File")],
100
+ title="Image-to-sketch",
101
+ description="Transfer any image into BW cartoon-style sketch!").launch(share=True)