Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from sahi.prediction import ObjectPrediction
|
4 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
+
from ultralyticsplus import YOLO
|
6 |
+
|
7 |
+
|
8 |
+
def yolov8_inference(
|
9 |
+
image: gr.inputs.Image = None,
|
10 |
+
model_path: gr.inputs.Dropdown = None,
|
11 |
+
image_size: gr.inputs.Slider = 640,
|
12 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
13 |
+
iou_threshold: gr.inputs.Slider = 0.25,
|
14 |
+
):
|
15 |
+
"""
|
16 |
+
YOLOv8 inference function
|
17 |
+
Args:
|
18 |
+
image: Input image
|
19 |
+
model_path: Path to the model
|
20 |
+
image_size: Image size
|
21 |
+
conf_threshold: Confidence threshold
|
22 |
+
iou_threshold: IOU threshold
|
23 |
+
Returns:
|
24 |
+
Rendered image
|
25 |
+
"""
|
26 |
+
model = YOLO(model_path)
|
27 |
+
model.conf = conf_threshold
|
28 |
+
model.iou = iou_threshold
|
29 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
30 |
+
object_prediction_list = []
|
31 |
+
for _, image_results in enumerate(results):
|
32 |
+
image_predictions_in_xyxy_format = image_results['det']
|
33 |
+
for pred in image_predictions_in_xyxy_format:
|
34 |
+
x1, y1, x2, y2 = (
|
35 |
+
int(pred[0]),
|
36 |
+
int(pred[1]),
|
37 |
+
int(pred[2]),
|
38 |
+
int(pred[3]),
|
39 |
+
)
|
40 |
+
bbox = [x1, y1, x2, y2]
|
41 |
+
score = pred[4]
|
42 |
+
category_name = model.model.names[int(pred[5])]
|
43 |
+
category_id = pred[5]
|
44 |
+
object_prediction = ObjectPrediction(
|
45 |
+
bbox=bbox,
|
46 |
+
category_id=int(category_id),
|
47 |
+
score=score,
|
48 |
+
category_name=category_name,
|
49 |
+
)
|
50 |
+
object_prediction_list.append(object_prediction)
|
51 |
+
|
52 |
+
image = read_image(image)
|
53 |
+
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
54 |
+
return output_image['image']
|
55 |
+
|
56 |
+
|
57 |
+
inputs = [
|
58 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
59 |
+
gr.inputs.Dropdown(["Asma/GreenHawk_test"],
|
60 |
+
default="Asma/GreenHawk_test", label="Model"),
|
61 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
62 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
63 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="IOU Threshold"),
|
64 |
+
]
|
65 |
+
|
66 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
67 |
+
title = "GreenHawk - Visual Pollution Detection"
|
68 |
+
|
69 |
+
demo_app = gr.Interface(
|
70 |
+
fn=yolov8_inference,
|
71 |
+
inputs=inputs,
|
72 |
+
outputs=outputs,
|
73 |
+
title=title,
|
74 |
+
# examples=examples,
|
75 |
+
cache_examples=True,
|
76 |
+
theme='huggingface',
|
77 |
+
)
|
78 |
+
demo_app.launch(enable_queue=True,share=True)
|