Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
import zipfile | |
import run_auditor_user_defined | |
import run_critic_user_defined | |
import run_rank | |
import shutil | |
import time | |
import pre_process | |
from utils import dotdict, clean_folder | |
from streamlit_js_eval import streamlit_js_eval | |
os.environ['DISPLAY'] = ':0' | |
# Store the initial value of widgets in session state | |
if "visibility" not in st.session_state: | |
st.session_state.visibility = "visible" | |
st.session_state.disabled = False | |
if "start_preprocess" not in st.session_state: | |
st.session_state.start_preprocess = False | |
if "start_critic" not in st.session_state: | |
st.session_state.start_critic = False | |
if "start_auditor" not in st.session_state: | |
st.session_state.start_auditor = False | |
if "start_ranking" not in st.session_state: | |
st.session_state.start_ranking = False | |
if "section_active_preprocess" not in st.session_state: | |
st.session_state.section_active_preprocess = True | |
if "section_active_auditor" not in st.session_state: | |
st.session_state.section_active_auditor = False | |
if "section_active_critic" not in st.session_state: | |
st.session_state.section_active_critic = False | |
if "section_active_ranking" not in st.session_state: | |
st.session_state.section_active_ranking = False | |
if "args" not in st.session_state: | |
st.session_state.args = None | |
if "args_c" not in st.session_state: | |
st.session_state.args_c = None | |
if "args_r" not in st.session_state: | |
st.session_state.args_r = None | |
def start_preprocess(): | |
st.session_state.start_preprocess = True | |
def end_preprocess(): | |
st.session_state.end_preprocess = False | |
def start_auditor(): | |
st.session_state.start_auditor = True | |
def end_auditor(): | |
st.session_state.start_auditor = False | |
def start_critic(): | |
st.session_state.start_critic = True | |
def end_critic(): | |
st.session_state.start_critic = False | |
def start_ranking(): | |
st.session_state.start_ranking = True | |
def end_ranking(): | |
st.session_state.start_ranking = False | |
with st.sidebar: | |
openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password") | |
"[Get an OpenAI API key (not needed for demo)](https://platform.openai.com/account/api-keys)" | |
"[View the source code](https://github.com/sciencepal/GPTLens/blob/aditya-test/src/UI.py)" | |
"[](https://codespaces.new/sciencepal/GPTLens?quickstart=1)" | |
st.divider() | |
if st.button("Reset App"): | |
st.session_state.section_active_critic = False | |
st.session_state.section_active_ranking = False | |
st.session_state.section_active_auditor = False | |
end_critic() | |
end_ranking() | |
end_auditor() | |
# streamlit_js_eval(js_expressions="parent.window.location.reload()") | |
st.title("π¬ GPTLens Demo") | |
st.caption("π Smart Contract Vulnerability Detection powered by OpenAI LLM") | |
if not openai_api_key: | |
st.warning("In GPTlens, you must enter OpenAI API key to continue. Not needed for this demo") | |
# st.stop() | |
else: | |
os.environ["OPENAI_API_KEY"] = openai_api_key | |
st.info("Note that this demo uses only dummy data") | |
with open("data_sample/CVE/2018-13071.sol") as f: | |
raw1 = f.read() | |
with open("data_sample/CVE/2018-13072.sol") as f: | |
raw2 = f.read() | |
with open("data_sample/CVE/2018-13073.sol") as f: | |
raw3 = f.read() | |
with open("data_sample/CVE/2018-13074.sol") as f: | |
raw4 = f.read() | |
with open("data_sample/CVE_clean/2018-13071.sol") as f: | |
clean1 = f.read() | |
with open("data_sample/CVE_clean/2018-13072.sol") as f: | |
clean2 = f.read() | |
with open("data_sample/CVE_clean/2018-13073.sol") as f: | |
clean3 = f.read() | |
with open("data_sample/CVE_clean/2018-13074.sol") as f: | |
clean4 = f.read() | |
with open("data_sample/prompts.py") as f: | |
prompt = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/2018-13071.json") as f: | |
audit1 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/2018-13072.json") as f: | |
audit2 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/2018-13073.json") as f: | |
audit3 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/2018-13074.json") as f: | |
audit4 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/2018-13071.json") as f: | |
critic1 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/2018-13072.json") as f: | |
critic2 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/2018-13073.json") as f: | |
critic3 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/2018-13074.json") as f: | |
critic4 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/ranker_default/2018-13071.json") as f: | |
ranker1 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/ranker_default/2018-13072.json") as f: | |
ranker2 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/ranker_default/2018-13073.json") as f: | |
ranker3 = f.read() | |
with open("results/auditor_gpt-4-turbo-preview_0.7_top3_1/critic_gpt-4-turbo-preview_0.0_1_few/ranker_default/2018-13074.json") as f: | |
ranker4 = f.read() | |
# if st.session_state.section_active_preprocess: | |
st.header("1. Preprocessing Step", divider=True) | |
tab4, tab3, tab2, tab1 = st.tabs(["File 1", "File 2", "File 3", "File 4"]) | |
with tab1: | |
with st.container(height=400): | |
st.code(raw1, language='solidity') | |
with tab2: | |
with st.container(height=400): | |
st.code(raw2, language='solidity') | |
with tab3: | |
with st.container(height=400): | |
st.code(raw3, language='solidity') | |
with tab4: | |
with st.container(height=400): | |
st.code(raw4, language='solidity') | |
# preprocess_button = st.button("Start Preprocessing", key="preprocess", on_click=start_auditor) | |
# if st.session_state.start_auditor: | |
st.subheader("Result 1.1 - Processed Files", divider=True) | |
tab4, tab3, tab2, tab1 = st.tabs(["File 1", "File 2", "File 3", "File 4"]) | |
with tab1: | |
with st.container(height=400): | |
st.code(clean1, language='solidity') | |
with tab2: | |
with st.container(height=400): | |
st.code(clean2, language='solidity') | |
with tab3: | |
with st.container(height=400): | |
st.code(clean3, language='solidity') | |
with tab4: | |
with st.container(height=400): | |
st.code(clean4, language='solidity') | |
st.divider() | |
st.header("2. Auditor Step", divider=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
model = st.radio( | |
"Set the GPT model π", | |
key="model", | |
options=["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"], | |
index=2 | |
) | |
topk = st.number_input( | |
"Set the topk auditor responses π", | |
key="topk", | |
min_value=1, | |
max_value=10, | |
value=3, | |
format="%d" | |
) | |
with col2: | |
temperature = st.number_input( | |
"Set the temperature π", | |
key="temperature", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.7, | |
format="%f" | |
) | |
num_auditors = st.number_input( | |
"Set the num auditors π", | |
key="num_auditors", | |
min_value=1, | |
max_value=10, | |
value=1, | |
format="%d" | |
) | |
st.subheader("Prompt File") | |
with st.container(height=400): | |
st.code(prompt, language='python') | |
st.subheader("Result 2.1 - Auditor Results", divider=True) | |
tab4, tab3, tab2, tab1 = st.tabs(["File 1", "File 2", "File 3", "File 4"]) | |
with tab1: | |
with st.container(height=400): | |
st.code(audit1, language='json') | |
with tab2: | |
with st.container(height=400): | |
st.code(audit2, language='json') | |
with tab3: | |
with st.container(height=400): | |
st.code(audit3, language='json') | |
with tab4: | |
with st.container(height=400): | |
st.code(audit4, language='json') | |
st.divider() | |
st.header("3. Critic Step", divider=True) | |
col1, col2 = st.columns(2) | |
args = st.session_state.args | |
with col1: | |
model_c = st.radio( | |
"Set the GPT model π", | |
key="model_c", | |
options=["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo-preview"], | |
index=2 | |
) | |
auditor_dir_c = st.text_input( | |
"Auditor Directory location", | |
value=f"temporary_dir/path/to/data" | |
) | |
with col2: | |
temperature_c = st.number_input( | |
"Set the temperature π", | |
key="temperature_c", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.0, | |
format="%f" | |
) | |
num_critic_c = st.number_input( | |
"Set the num critics π", | |
key="num_critic_c", | |
min_value=1, | |
max_value=10, | |
value=1, | |
format="%d" | |
) | |
shot_c = st.radio( | |
"Set the num shots (few/one) π", | |
key="shot_c", | |
options=["one", "few"], | |
index=1 | |
) | |
st.subheader("Result 3.1 - Critic Results", divider=True) | |
tab4, tab3, tab2, tab1 = st.tabs(["File 1", "File 2", "File 3", "File 4"]) | |
with tab1: | |
with st.container(height=400): | |
st.code(critic1, language='json') | |
with tab2: | |
with st.container(height=400): | |
st.code(critic2, language='json') | |
with tab3: | |
with st.container(height=400): | |
st.code(critic3, language='json') | |
with tab4: | |
with st.container(height=400): | |
st.code(critic4, language='json') | |
st.divider() | |
st.header("4. Ranking Step", divider=True) | |
col1, col2 = st.columns(2) | |
args = st.session_state.args | |
args_c = st.session_state.args_c | |
with col1: | |
auditor_dir_r = st.text_input( | |
"Auditor Dir location", | |
value=f"temporary_dir/path/to/data" | |
) | |
critic_dir_r = st.text_input( | |
"Critic Directory location", | |
value=f"temporary_dir/path/to/data" | |
) | |
with col2: | |
strategy_r = st.radio( | |
"Set the strategy (default/custom) π", | |
key="strategy_r", | |
options=["default", "custom"], | |
index=0 | |
) | |
st.subheader("Result 4.1 - Ranking Results", divider=True) | |
tab4, tab3, tab2, tab1 = st.tabs(["File 1", "File 2", "File 3", "File 4"]) | |
with tab1: | |
with st.container(height=400): | |
st.code(ranker1, language='json') | |
with tab2: | |
with st.container(height=400): | |
st.code(ranker2, language='json') | |
with tab3: | |
with st.container(height=400): | |
st.code(ranker3, language='json') | |
with tab4: | |
with st.container(height=400): | |
st.code(ranker4, language='json') | |
st.divider() |