Spaces:
Sleeping
Sleeping
Aishwarya Solanki
commited on
Commit
·
a6ce7be
1
Parent(s):
c3a4000
init commit
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import google.generativeai as genai
|
5 |
+
import openai
|
6 |
+
|
7 |
+
def generate_text_chatgpt(key, prompt, temperature, top_p):
|
8 |
+
|
9 |
+
openai.api_key = key
|
10 |
+
|
11 |
+
response = openai.chat.completions.create(
|
12 |
+
model="gpt-4-0613",
|
13 |
+
messages=[{"role": "system", "content": "Suppose that you are a talented diagnostician"},
|
14 |
+
{"role": "user", "content": prompt}],
|
15 |
+
temperature=temperature,
|
16 |
+
max_tokens=50,
|
17 |
+
top_p=top_p,
|
18 |
+
frequency_penalty=0
|
19 |
+
)
|
20 |
+
|
21 |
+
return response.choices[0].message.content
|
22 |
+
|
23 |
+
|
24 |
+
def generate_text_gemini(key, prompt, temperature, top_p):
|
25 |
+
genai.configure(api_key=key)
|
26 |
+
|
27 |
+
generation_config = genai.GenerationConfig(
|
28 |
+
max_output_tokens=len(prompt)+50,
|
29 |
+
temperature=temperature,
|
30 |
+
top_p=top_p,
|
31 |
+
)
|
32 |
+
model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
|
33 |
+
response = model.generate_content(prompt)
|
34 |
+
return response.text
|
35 |
+
|
36 |
+
|
37 |
+
def generate_text_llama(key, prompt, temperature, top_p):
|
38 |
+
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
39 |
+
|
40 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model_name}"
|
41 |
+
headers = {"Authorization": f"Bearer {key}"}
|
42 |
+
payload = {
|
43 |
+
"inputs": prompt,
|
44 |
+
"parameters": {
|
45 |
+
"temperature": temperature,
|
46 |
+
"max_new_tokens": 50,
|
47 |
+
"top_p": top_p,
|
48 |
+
}
|
49 |
+
}
|
50 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
51 |
+
resp_obj = response.json()
|
52 |
+
if isinstance(resp_obj, list):
|
53 |
+
resp = resp_obj[0]
|
54 |
+
if 'generated_text' in resp:
|
55 |
+
if len(resp['generated_text']) > len(prompt):
|
56 |
+
return resp['generated_text'][len(prompt):]
|
57 |
+
return resp['generated_text']
|
58 |
+
return resp
|
59 |
+
return resp_obj
|
60 |
+
|
61 |
+
|
62 |
+
def diagnose(key, model, top_k, temperature, symptom_prompt):
|
63 |
+
|
64 |
+
if symptom_prompt:
|
65 |
+
if "GPT" in model:
|
66 |
+
message = generate_text_chatgpt(key, symptom_prompt, temperature, top_k)
|
67 |
+
elif "Llama" in model:
|
68 |
+
message = generate_text_llama(key, symptom_prompt, temperature, top_k)
|
69 |
+
elif "Gemini" in model:
|
70 |
+
message = generate_text_gemini(key, symptom_prompt, temperature, top_k)
|
71 |
+
else:
|
72 |
+
message = "Incorrect model, please try again."
|
73 |
+
else:
|
74 |
+
message = "Please add the symptoms data"
|
75 |
+
|
76 |
+
return message
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Blocks() as ui:
|
81 |
+
message = "Hello, Welcome to the GUI by Team #9."
|
82 |
+
|
83 |
+
with gr.Row(equal_height=500):
|
84 |
+
with gr.Column(scale=1, min_width=300):
|
85 |
+
model = gr.Radio(label="LLM Selection", value="GPT-3.5-Turbo",
|
86 |
+
choices=["GPT-3.5-Turbo", "Llama-3.1", "Gemini-1.5"])
|
87 |
+
key = gr.Textbox(label="Please input your LLM key", type="password")
|
88 |
+
gr.Button(value="Don't have an LLM key? Get one through the below links.")
|
89 |
+
gr.Button(value="OpenAi Key", link="https://platform.openai.com/account/api-keys")
|
90 |
+
gr.Button(value="Meta Llama Key", link="https://platform.openai.com/account/api-keys")
|
91 |
+
gr.Button(value="Gemini Key", link="https://platform.openai.com/account/api-keys")
|
92 |
+
gr.ClearButton(key, message, variant="primary")
|
93 |
+
|
94 |
+
with gr.Column(scale=2, min_width=600):
|
95 |
+
message = gr.Textbox(label="", value=message, interactive=False, visible=True)
|
96 |
+
output = gr.Textbox(label="Model output status", value="Model hasn't run yet.")
|
97 |
+
temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.01, label="Temperature", info="Set the Temperature")
|
98 |
+
top_k = gr.Slider(1, 10, value=3, step = 1, label="top-k value", info="Set the 'k' for top-k LLM responses")
|
99 |
+
symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
|
100 |
+
llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose")
|
101 |
+
llm_btn.click(fn=diagnose, inputs=[key, model, top_k, temperature, symptoms], outputs=output, api_name="auditor")
|
102 |
+
output = gr.Textbox(label="LLM output status", value=output.value)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
ui.launch(share=True)
|