import gradio as gr
import os
import requests
from huggingface_hub import InferenceClient
import google.generativeai as genai
import openai
def api_check_msg(api_key, selected_model):
res = validate_api_key(api_key, selected_model)
return res["message"]
def validate_api_key(api_key, selected_model):
# Check if the API key is valid for GPT-3.5-Turbo
if "GPT" in selected_model:
url = "https://api.openai.com/v1/models"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": '
API Key is valid!
'}
else:
return {"is_valid": False, "message": f'Invalid OpenAI API Key. Status code: {response.status_code}
'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'Invalid OpenAI API Key. Error: {e}
'}
elif "Llama" in selected_model:
url = "https://huggingface.co/api/whoami-v2"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": 'API Key is valid!
'}
else:
return {"is_valid": False, "message": f'Invalid Hugging Face API Key. Status code: {response.status_code}
'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'Invalid Hugging Face API Key. Error: {e}
'}
elif "Gemini" in selected_model:
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Help me diagnose the patient.")
return {"is_valid": True, "message": 'API Key is valid!
'}
except Exception as e:
return {"is_valid": False, "message": f'Invalid Google API Key. Error: {e}
'}
def generate_text_chatgpt(key, prompt, temperature, top_p):
openai.api_key = key
prompt_template = f"""
{prompt}
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
{"role": "user", "content": prompt_template}],
temperature=temperature,
max_tokens=50,
top_p=top_p,
frequency_penalty=0
)
return response.choices[0].message.content
def generate_text_gemini(key, prompt, temperature, top_p):
genai.configure(api_key=key)
prompt_template = f"""
{prompt}
"""
generation_config = genai.GenerationConfig(
max_output_tokens=len(prompt_template)+50,
temperature=temperature,
top_p=top_p,
)
model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
response = model.generate_content(prompt_template)
return response.text
def generate_text_llama(key, prompt, temperature, top_p):
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
client = InferenceClient(api_key=key)
prompt_template = f"""
{prompt}
Do not list the symptoms again in the response. Do not add any additional text. Do not attempt to explain your answer.
"""
messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
{"role": "user","content": prompt_template}]
completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=len(prompt_template)+50,
temperature=temperature,
top_p=top_p
)
response = completion.choices[0].message.content
if len(response) > len(prompt_template):
return response[len(prompt_template):]
return response
def diagnose(key, model, top_k, temperature, symptom_prompt):
model_map = {
"GPT-3.5-Turbo": "GPT",
"Llama-3": "Llama",
"Gemini-1.5": "Gemini"
}
if symptom_prompt:
if "GPT" in model:
message = generate_text_chatgpt(key, symptom_prompt, temperature, top_k)
elif "Llama" in model:
message = generate_text_llama(key, symptom_prompt, temperature, top_k)
elif "Gemini" in model:
message = generate_text_gemini(key, symptom_prompt, temperature, top_k)
else:
message = "Incorrect model, please try again."
else:
message = "Please add the symptoms data"
return message
def update_model_components(selected_model):
model_map = {
"GPT-3.5-Turbo": "GPT",
"Llama-3": "Llama",
"Gemini-1.5": "Gemini"
}
link_map = {
"GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys",
"Llama-3": "https://hf.co/settings/tokens",
"Gemini-1.5": "https://aistudio.google.com/apikey"
}
textbox_label = f"Please input the API key for your {model_map[selected_model]} model"
button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here."
button_link = link_map[selected_model]
return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link)
def toggle_button(symptoms_text, api_key, model):
if symptoms_text.strip() and validate_api_key(api_key, model):
return gr.update(interactive=True)
return gr.update(interactive=False)
with gr.Blocks() as ui:
with gr.Row(equal_height=500):
with gr.Column(scale=1, min_width=300):
model = gr.Radio(label="LLM Selection", value="GPT-3.5-Turbo",
choices=["GPT-3.5-Turbo", "Llama-3", "Gemini-1.5"])
is_valid = False
key = gr.Textbox(label="Please input the API key for your Large Language model", type="password")
status_message = gr.HTML(label="Validation Status")
key.input(fn=api_check_msg, inputs=[key, model], outputs=status_message)
button = gr.Button(value="Don't have an API key? Get one for the GPT model here.", link="https://platform.openai.com/account/api-keys")
model.change(update_model_components, inputs=model, outputs=[key, button])
gr.ClearButton(key, variant="primary")
with gr.Column(scale=2, min_width=600):
gr.Markdown("## Hello, Welcome to the GUI by Team #9.")
temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.05, label="Temperature", info="Set the Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step = 0.05, label="top-p value", info="Set the sampling nucleus parameter")
symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False)
symptoms.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
key.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
model.change(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
output = gr.Textbox(label="LLM Output Status", interactive=False, placeholder="Output will appear here...")
llm_btn.click(fn=diagnose, inputs=[key, model, top_p, temperature, symptoms], outputs=output, api_name="LLM_Comparator")
ui.launch(share=True)