File size: 8,142 Bytes
d29ca1f
 
 
 
 
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ca1f
 
dfd4731
d29ca1f
 
 
dfd4731
 
d29ca1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ca1f
 
0c6486f
d29ca1f
0c6486f
 
 
 
d29ca1f
 
 
 
 
 
 
 
 
 
 
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ca1f
 
 
 
 
 
 
 
 
f061a57
dfd4731
d37d386
dfd4731
d37d386
dfd4731
d37d386
d29ca1f
 
 
 
3fee699
d29ca1f
 
3fee699
d29ca1f
dfd4731
d29ca1f
dfd4731
 
ab85d06
dfd4731
ab85d06
d29ca1f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import requests
import google.generativeai as genai
import openai
from collections import Counter
from huggingface_hub import InferenceClient

def api_check_msg(api_key, selected_model):
    res = validate_api_key(api_key, selected_model)
    return res["message"]

def validate_api_key(api_key, selected_model):
    # Check if the API key is valid for GPT-3.5-Turbo
    if "GPT" in selected_model:
        url = "https://api.openai.com/v1/models"
        headers = {
            "Authorization": f"Bearer {api_key}"
        }
        try:
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
            else:
                return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Status code: {response.status_code}</p>'}
        except requests.exceptions.RequestException as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Error: {e}</p>'}
    elif "Llama" in selected_model:
        url = "https://huggingface.co/api/whoami-v2"
        headers = {
            "Authorization": f"Bearer {api_key}"
        }
        try:
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
            else:
                return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Status code: {response.status_code}</p>'}
        except requests.exceptions.RequestException as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Error: {e}</p>'}
    elif "Gemini" in selected_model:
        try:
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel("gemini-1.5-flash")
            response = model.generate_content("Help me diagnose the patient.")
            return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
        except Exception as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid Google API Key. Error: {e}</p>'}

def generate_text_chatgpt(key, prompt, temperature, top_p):

    openai.api_key = key

    response = openai.chat.completions.create(
      model="gpt-3.5-turbo-1106",
      messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
                {"role": "user", "content": prompt}],
      temperature=temperature,
      max_tokens=50,
      top_p=top_p,
      frequency_penalty=0
    )

    return response.choices[0].message.content


def generate_text_gemini(key, prompt, temperature, top_p):
    genai.configure(api_key=key)

    generation_config = genai.GenerationConfig(
        max_output_tokens=len(prompt)+50,
        temperature=temperature,
        top_p=top_p,
    )
    model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
    response = model.generate_content(prompt)
    return response.text


def generate_text_llama(key, prompt, temperature, top_p):
    model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
    client = InferenceClient(api_key=key)

    messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
                {"role": "user","content": prompt}]

    completion = client.chat.completions.create(
        model=model_name,
        messages=messages, 
        max_tokens=len(prompt)+50,
        temperature=temperature,
        top_p=top_p
    )

    response = completion.choices[0].message.content
    if len(response) > len(prompt):
        return response[len(prompt):]
    return response


def diagnose(gpt_key, llama_key, gemini_key, top_p, temperature, symptoms):

    if symptoms:
        gpt_message = generate_text_chatgpt(gpt_key, symptoms, temperature, top_p)
        llama_message = generate_text_llama(llama_key, symptoms, temperature, top_p)
        gemini_message = generate_text_gemini(gemini_key, symptoms, temperature, top_p)

        outputs = [gpt_message, llama_message, gemini_message]
        output_counts = Counter(outputs)
        majority_output, majority_count = output_counts.most_common(1)[0]
        confidence = (majority_count / len(outputs)) * 100
    else:
        majority_output = "Please add the symptoms data to start the ranking process"
        confidence = 0
    
    return majority_output, confidence

def update_model_components(selected_model):
    model_map = {
                "GPT-3.5-Turbo": "GPT",
                "Llama-3": "Llama",
                "Gemini-1.5": "Gemini"
            }

    link_map = {
        "GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys",
        "Llama-3": "https://hf.co/settings/tokens",
        "Gemini-1.5": "https://aistudio.google.com/apikey"
    }
    textbox_label = f"Please input the API key for your {model_map[selected_model]} model"
    button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here."
    button_link = link_map[selected_model]
    return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link)

def toggle_button(symptoms_text, gpt_key, llama_key, gemini_key):
    if symptoms_text.strip() and validate_api_key(gpt_key, "GPT") and \
        validate_api_key(llama_key, "Llama") and validate_api_key(gemini_key, "Gemini"):
        return gr.update(interactive=True)
    return gr.update(interactive=False)


with gr.Blocks() as ui:

    with gr.Row(equal_height=500):
        with gr.Column(scale=1, min_width=300):
            gpt_key = gr.Textbox(label="Please input your GPT key", type="password")
            llama_key = gr.Textbox(label="Please input your Llama key", type="password")
            gemini_key = gr.Textbox(label="Please input your Gemini key", type="password")
            is_valid = False
            status_message = gr.HTML(label="Validation Status")
            gpt_key.input(fn=api_check_msg, inputs=[gpt_key, gr.Textbox(value="GPT", visible=False)], outputs=status_message)
            status_message = gr.HTML(label="Validation Status")
            llama_key.input(fn=api_check_msg, inputs=[llama_key, gr.Textbox(value="Llama", visible=False)], outputs=status_message)
            status_message = gr.HTML(label="Validation Status")
            gemini_key.input(fn=api_check_msg, inputs=[gemini_key, gr.Textbox(value="Gemini", visible=False)], outputs=status_message)
            gr.Button(value="Don't have an LLM key? Get one through the below links.")
            gr.Button(value="OpenAi Key", link="https://platform.openai.com/account/api-keys")
            gr.Button(value="Meta Llama Key", link="https://platform.openai.com/account/api-keys")
            gr.Button(value="Gemini Key", link="https://platform.openai.com/account/api-keys")
            gr.ClearButton(gpt_key, llama_key, gemini_key, variant="primary")
            
        with gr.Column(scale=2, min_width=600):
            gr.Markdown("### Hello, Welcome to the GUI by Team #9.")
            temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.01, label="Temperature", info="Set the Temperature")
            top_p = gr.Slider(1, 10, value=3, step = 1, label="top-p value", info="Set the sampling nucleus parameter")
            symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
            llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False)            
            symptoms.input(toggle_button, inputs=[symptoms, gpt_key, llama_key, gemini_key], outputs=llm_btn)
            output = gr.Textbox(label="LLM output with majority vote and confidence", interactive=False, placeholder="Output will appear here...")
            llm_btn.click(fn=diagnose, inputs=[gpt_key, llama_key, gemini_key, top_p, temperature, symptoms], outputs=output, api_name="LLM_Comparator")


ui.launch(share=True)