File size: 10,447 Bytes
d29ca1f
 
 
 
 
dfd4731
788d5cb
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7469ec2
dfd4731
 
 
 
 
 
 
 
 
 
 
 
7469ec2
dfd4731
 
 
 
 
 
 
 
 
7469ec2
dfd4731
 
d29ca1f
 
dfd4731
d29ca1f
 
 
dfd4731
71ec392
d29ca1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ca1f
788d5cb
 
 
 
 
5170879
788d5cb
 
 
 
 
 
 
 
 
d29ca1f
0c6486f
d29ca1f
0c6486f
d5c067b
5170879
 
cd8f387
 
 
1cb1ec9
 
 
d29ca1f
 
788d5cb
d29ca1f
 
d5c067b
 
5170879
d29ca1f
5170879
 
d29ca1f
dfd4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ca1f
 
 
 
 
 
 
 
 
f061a57
dfd4731
d37d386
dfd4731
d37d386
dfd4731
d37d386
3be8e10
d29ca1f
 
 
3fee699
d29ca1f
 
71ec392
d29ca1f
ae7ddef
d29ca1f
dfd4731
 
5170879
 
56d663c
 
5170879
3be8e10
 
 
 
 
 
 
56d663c
3be8e10
d5c067b
5170879
d29ca1f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import requests
import google.generativeai as genai
import openai
from collections import Counter
from huggingface_hub import InferenceClient
import re

def api_check_msg(api_key, selected_model):
    res = validate_api_key(api_key, selected_model)
    return res["message"]

def validate_api_key(api_key, selected_model):
    # Check if the API key is valid for GPT-3.5-Turbo
    if "GPT" in selected_model:
        url = "https://api.openai.com/v1/models"
        headers = {
            "Authorization": f"Bearer {api_key}"
        }
        try:
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                return {"is_valid": True, "message": '<p style="color: green;">GPT API Key is valid!</p>'}
            else:
                return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Status code: {response.status_code}</p>'}
        except requests.exceptions.RequestException as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Error: {e}</p>'}
    elif "Llama" in selected_model:
        url = "https://huggingface.co/api/whoami-v2"
        headers = {
            "Authorization": f"Bearer {api_key}"
        }
        try:
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                return {"is_valid": True, "message": '<p style="color: green;"> Llama API Key is valid!</p>'}
            else:
                return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Status code: {response.status_code}</p>'}
        except requests.exceptions.RequestException as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Error: {e}</p>'}
    elif "Gemini" in selected_model:
        try:
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel("gemini-1.5-flash")
            response = model.generate_content("Help me diagnose the patient.")
            return {"is_valid": True, "message": '<p style="color: green;">Gemini API Key is valid!</p>'}
        except Exception as e:
            return {"is_valid": False, "message": f'<p style="color: red;">Invalid Google API Key. Error: {e}</p>'}

def generate_text_chatgpt(key, prompt, temperature, top_p):

    openai.api_key = key

    response = openai.chat.completions.create(
      model="gpt-3.5-turbo-1106",
      messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient based on the symptoms they provided."},
                {"role": "user", "content": prompt}],
      temperature=temperature,
      max_tokens=50,
      top_p=top_p,
      frequency_penalty=0
    )

    return response.choices[0].message.content


def generate_text_gemini(key, prompt, temperature, top_p):
    genai.configure(api_key=key)

    generation_config = genai.GenerationConfig(
        max_output_tokens=len(prompt)+50,
        temperature=temperature,
        top_p=top_p,
    )
    model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
    response = model.generate_content(prompt)
    return response.text


def generate_text_llama(key, prompt, temperature, top_p):
    model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
    client = InferenceClient(api_key=key)

    messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
                {"role": "user","content": prompt}]

    completion = client.chat.completions.create(
        model=model_name,
        messages=messages, 
        max_tokens=len(prompt)+50,
        temperature=temperature,
        top_p=top_p
    )

    response = completion.choices[0].message.content
    if len(response) > len(prompt):
        return response[len(prompt):]
    return response

def sanitize_outputs(outputs):
    sanitized_results = []
    for output in outputs:
        output = output.replace("\n", " ")
        output = re.sub(r"(Diagnose:|Answer:)", "", output, flags=re.IGNORECASE).strip()
        diagnoses = ["Psoriasis", "Arthritis", "Bronchial Asthma", "Cervical spondylosis"]
        found_diagnoses = [disease for disease in diagnoses if disease in output]

        if found_diagnoses:
            sanitized_results.append(found_diagnoses[0])
        else:
            sanitized_results.append("Unknown")  # Handle case where no valid diagnosis is found

    return sanitized_results


def diagnose(gpt_key, llama_key, gemini_key, top_p, temperature, symptoms):

    if symptoms:
        prompt = "Given the next set of symptoms, classify the diagnosis as one of the following: "
        prompt += "Psoriasis, Arthritis, Bronchial Asthma, Cervical spondylosis. Please only output the classified diagnosis and nothing after that."
        prompt += "Choose only one among the words Psoriasis, Arthritis, Bronchial Asthma or Cervical spondylosis"
        prompt += "Do not list the symptoms again in the response. Do not add any additional text. Do not attempt to explain your answer."
        prompt += symptoms
        prompt += "Your Diagnosis: []"
        gpt_message = generate_text_chatgpt(gpt_key, prompt, temperature, top_p)
        llama_message = generate_text_llama(llama_key, prompt, temperature, top_p)
        gemini_message = generate_text_gemini(gemini_key, prompt, temperature, top_p)

        outputs = [gpt_message, llama_message, gemini_message]
        outputs = sanitize_outputs(outputs)
        output_counts = Counter(outputs)
        majority_output, majority_count = output_counts.most_common(1)[0]
        confidence = int((majority_count / len(outputs)) * 100)

        return gpt_message, llama_message, gemini_message, majority_output, confidence
    else:
        return {"is_valid": False, "message": f'<p style="color: red;">Please add the symptoms data to start the ranking process.</p>'}


def update_model_components(selected_model):
    model_map = {
                "GPT-3.5-Turbo": "GPT",
                "Llama-3": "Llama",
                "Gemini-1.5": "Gemini"
            }

    link_map = {
        "GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys",
        "Llama-3": "https://hf.co/settings/tokens",
        "Gemini-1.5": "https://aistudio.google.com/apikey"
    }
    textbox_label = f"Please input the API key for your {model_map[selected_model]} model"
    button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here."
    button_link = link_map[selected_model]
    return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link)

def toggle_button(symptoms_text, gpt_key, llama_key, gemini_key):
    if symptoms_text.strip() and validate_api_key(gpt_key, "GPT") and \
        validate_api_key(llama_key, "Llama") and validate_api_key(gemini_key, "Gemini"):
        return gr.update(interactive=True)
    return gr.update(interactive=False)


with gr.Blocks() as ui:

    with gr.Row(equal_height=500):
        with gr.Column(scale=1, min_width=300):
            gpt_key = gr.Textbox(label="Please input your GPT key", type="password")
            llama_key = gr.Textbox(label="Please input your Llama key", type="password")
            gemini_key = gr.Textbox(label="Please input your Gemini key", type="password")
            is_valid = False
            status_message = gr.HTML(label="Validation Status")
            gpt_key.input(fn=api_check_msg, inputs=[gpt_key, gr.Textbox(value="GPT", visible=False)], outputs=status_message)
            status_message = gr.HTML(label="Validation Status")
            llama_key.input(fn=api_check_msg, inputs=[llama_key, gr.Textbox(value="Llama", visible=False)], outputs=status_message)
            status_message = gr.HTML(label="Validation Status")
            gemini_key.input(fn=api_check_msg, inputs=[gemini_key, gr.Textbox(value="Gemini", visible=False)], outputs=status_message)
            gr.Markdown("### Don't have an LLM key? Get one through the below links.")
            gr.Button(value="OpenAi Key", link="https://platform.openai.com/account/api-keys")
            gr.Button(value="Meta Llama Key", link="https://platform.openai.com/account/api-keys")
            gr.Button(value="Gemini Key", link="https://platform.openai.com/account/api-keys")
            gr.ClearButton(gpt_key, llama_key, gemini_key, variant="primary")
            
        with gr.Column(scale=2, min_width=600):
            gr.Markdown("### Hello, Welcome to the GUI by Team #9. This is the ranking API.")
            temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.01, label="Temperature", info="Set the Temperature")
            top_p = gr.Slider(0.0, 1.0, value=0.9, step = 0.05, label="top-p value", info="Set the sampling nucleus parameter")
            symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
            llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False)            
            symptoms.input(toggle_button, inputs=[symptoms, gpt_key, llama_key, gemini_key], outputs=llm_btn)
            with gr.Row(equal_height=200):
                with gr.Column(scale=1, min_width=150):
                    majority_output = gr.Textbox(label="Majority Output", interactive=False, placeholder="Majority Output")
                with gr.Column(scale=1, min_width=150):
                    confidence = gr.Textbox(label="Confidence Score (%)", interactive=False, placeholder="Confidence Score")

            with gr.Row(equal_height=200):
                with gr.Column(scale=1, min_width=66):
                    gpt_message = gr.Textbox(label="GPT Output", interactive=False, placeholder="GPT Output")
                with gr.Column(scale=1, min_width=66):
                    llama_message = gr.Textbox(label="LLaMA Output", interactive=False, placeholder="LLaMA Output")
                with gr.Column(scale=1, min_width=66):
                    gemini_message = gr.Textbox(label="Gemini Output", interactive=False, placeholder="Gemini Output")

            llm_btn.click(fn=diagnose, inputs=[gpt_key, llama_key, gemini_key, top_p, temperature, symptoms], 
                          outputs=[gpt_message, llama_message, gemini_message, majority_output, confidence], api_name="LLM_Comparator")

ui.launch(share=True)