Spaces:
Sleeping
Sleeping
File size: 10,447 Bytes
d29ca1f dfd4731 788d5cb dfd4731 7469ec2 dfd4731 7469ec2 dfd4731 7469ec2 dfd4731 d29ca1f dfd4731 d29ca1f dfd4731 71ec392 d29ca1f dfd4731 d29ca1f 788d5cb 5170879 788d5cb d29ca1f 0c6486f d29ca1f 0c6486f d5c067b 5170879 cd8f387 1cb1ec9 d29ca1f 788d5cb d29ca1f d5c067b 5170879 d29ca1f 5170879 d29ca1f dfd4731 d29ca1f f061a57 dfd4731 d37d386 dfd4731 d37d386 dfd4731 d37d386 3be8e10 d29ca1f 3fee699 d29ca1f 71ec392 d29ca1f ae7ddef d29ca1f dfd4731 5170879 56d663c 5170879 3be8e10 56d663c 3be8e10 d5c067b 5170879 d29ca1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import requests
import google.generativeai as genai
import openai
from collections import Counter
from huggingface_hub import InferenceClient
import re
def api_check_msg(api_key, selected_model):
res = validate_api_key(api_key, selected_model)
return res["message"]
def validate_api_key(api_key, selected_model):
# Check if the API key is valid for GPT-3.5-Turbo
if "GPT" in selected_model:
url = "https://api.openai.com/v1/models"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": '<p style="color: green;">GPT API Key is valid!</p>'}
else:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Status code: {response.status_code}</p>'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Error: {e}</p>'}
elif "Llama" in selected_model:
url = "https://huggingface.co/api/whoami-v2"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": '<p style="color: green;"> Llama API Key is valid!</p>'}
else:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Status code: {response.status_code}</p>'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Error: {e}</p>'}
elif "Gemini" in selected_model:
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Help me diagnose the patient.")
return {"is_valid": True, "message": '<p style="color: green;">Gemini API Key is valid!</p>'}
except Exception as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Google API Key. Error: {e}</p>'}
def generate_text_chatgpt(key, prompt, temperature, top_p):
openai.api_key = key
response = openai.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient based on the symptoms they provided."},
{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=50,
top_p=top_p,
frequency_penalty=0
)
return response.choices[0].message.content
def generate_text_gemini(key, prompt, temperature, top_p):
genai.configure(api_key=key)
generation_config = genai.GenerationConfig(
max_output_tokens=len(prompt)+50,
temperature=temperature,
top_p=top_p,
)
model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
response = model.generate_content(prompt)
return response.text
def generate_text_llama(key, prompt, temperature, top_p):
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
client = InferenceClient(api_key=key)
messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
{"role": "user","content": prompt}]
completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=len(prompt)+50,
temperature=temperature,
top_p=top_p
)
response = completion.choices[0].message.content
if len(response) > len(prompt):
return response[len(prompt):]
return response
def sanitize_outputs(outputs):
sanitized_results = []
for output in outputs:
output = output.replace("\n", " ")
output = re.sub(r"(Diagnose:|Answer:)", "", output, flags=re.IGNORECASE).strip()
diagnoses = ["Psoriasis", "Arthritis", "Bronchial Asthma", "Cervical spondylosis"]
found_diagnoses = [disease for disease in diagnoses if disease in output]
if found_diagnoses:
sanitized_results.append(found_diagnoses[0])
else:
sanitized_results.append("Unknown") # Handle case where no valid diagnosis is found
return sanitized_results
def diagnose(gpt_key, llama_key, gemini_key, top_p, temperature, symptoms):
if symptoms:
prompt = "Given the next set of symptoms, classify the diagnosis as one of the following: "
prompt += "Psoriasis, Arthritis, Bronchial Asthma, Cervical spondylosis. Please only output the classified diagnosis and nothing after that."
prompt += "Choose only one among the words Psoriasis, Arthritis, Bronchial Asthma or Cervical spondylosis"
prompt += "Do not list the symptoms again in the response. Do not add any additional text. Do not attempt to explain your answer."
prompt += symptoms
prompt += "Your Diagnosis: []"
gpt_message = generate_text_chatgpt(gpt_key, prompt, temperature, top_p)
llama_message = generate_text_llama(llama_key, prompt, temperature, top_p)
gemini_message = generate_text_gemini(gemini_key, prompt, temperature, top_p)
outputs = [gpt_message, llama_message, gemini_message]
outputs = sanitize_outputs(outputs)
output_counts = Counter(outputs)
majority_output, majority_count = output_counts.most_common(1)[0]
confidence = int((majority_count / len(outputs)) * 100)
return gpt_message, llama_message, gemini_message, majority_output, confidence
else:
return {"is_valid": False, "message": f'<p style="color: red;">Please add the symptoms data to start the ranking process.</p>'}
def update_model_components(selected_model):
model_map = {
"GPT-3.5-Turbo": "GPT",
"Llama-3": "Llama",
"Gemini-1.5": "Gemini"
}
link_map = {
"GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys",
"Llama-3": "https://hf.co/settings/tokens",
"Gemini-1.5": "https://aistudio.google.com/apikey"
}
textbox_label = f"Please input the API key for your {model_map[selected_model]} model"
button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here."
button_link = link_map[selected_model]
return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link)
def toggle_button(symptoms_text, gpt_key, llama_key, gemini_key):
if symptoms_text.strip() and validate_api_key(gpt_key, "GPT") and \
validate_api_key(llama_key, "Llama") and validate_api_key(gemini_key, "Gemini"):
return gr.update(interactive=True)
return gr.update(interactive=False)
with gr.Blocks() as ui:
with gr.Row(equal_height=500):
with gr.Column(scale=1, min_width=300):
gpt_key = gr.Textbox(label="Please input your GPT key", type="password")
llama_key = gr.Textbox(label="Please input your Llama key", type="password")
gemini_key = gr.Textbox(label="Please input your Gemini key", type="password")
is_valid = False
status_message = gr.HTML(label="Validation Status")
gpt_key.input(fn=api_check_msg, inputs=[gpt_key, gr.Textbox(value="GPT", visible=False)], outputs=status_message)
status_message = gr.HTML(label="Validation Status")
llama_key.input(fn=api_check_msg, inputs=[llama_key, gr.Textbox(value="Llama", visible=False)], outputs=status_message)
status_message = gr.HTML(label="Validation Status")
gemini_key.input(fn=api_check_msg, inputs=[gemini_key, gr.Textbox(value="Gemini", visible=False)], outputs=status_message)
gr.Markdown("### Don't have an LLM key? Get one through the below links.")
gr.Button(value="OpenAi Key", link="https://platform.openai.com/account/api-keys")
gr.Button(value="Meta Llama Key", link="https://platform.openai.com/account/api-keys")
gr.Button(value="Gemini Key", link="https://platform.openai.com/account/api-keys")
gr.ClearButton(gpt_key, llama_key, gemini_key, variant="primary")
with gr.Column(scale=2, min_width=600):
gr.Markdown("### Hello, Welcome to the GUI by Team #9. This is the ranking API.")
temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.01, label="Temperature", info="Set the Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step = 0.05, label="top-p value", info="Set the sampling nucleus parameter")
symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False)
symptoms.input(toggle_button, inputs=[symptoms, gpt_key, llama_key, gemini_key], outputs=llm_btn)
with gr.Row(equal_height=200):
with gr.Column(scale=1, min_width=150):
majority_output = gr.Textbox(label="Majority Output", interactive=False, placeholder="Majority Output")
with gr.Column(scale=1, min_width=150):
confidence = gr.Textbox(label="Confidence Score (%)", interactive=False, placeholder="Confidence Score")
with gr.Row(equal_height=200):
with gr.Column(scale=1, min_width=66):
gpt_message = gr.Textbox(label="GPT Output", interactive=False, placeholder="GPT Output")
with gr.Column(scale=1, min_width=66):
llama_message = gr.Textbox(label="LLaMA Output", interactive=False, placeholder="LLaMA Output")
with gr.Column(scale=1, min_width=66):
gemini_message = gr.Textbox(label="Gemini Output", interactive=False, placeholder="Gemini Output")
llm_btn.click(fn=diagnose, inputs=[gpt_key, llama_key, gemini_key, top_p, temperature, symptoms],
outputs=[gpt_message, llama_message, gemini_message, majority_output, confidence], api_name="LLM_Comparator")
ui.launch(share=True) |