File size: 5,538 Bytes
3891395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Evaluation for two strings or list of strings.

Code taken from the DROP benchmark - https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
"""

from collections import defaultdict
from typing import List, Set, Tuple, Union
import string
import re
import numpy as np
from scipy.optimize import linear_sum_assignment


# From here through _normalize_answer was originally copied from:
# https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
# Then cleaned up and modified a bit.
def _remove_articles(text: str) -> str:
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    return re.sub(regex, " ", text)


def _white_space_fix(text: str) -> str:
    return " ".join(text.split())


EXCLUDE = set(string.punctuation)


def _remove_punc(text: str) -> str:
    if not _is_number(text):
        return "".join(ch for ch in text if ch not in EXCLUDE)
    else:
        return text


def _lower(text: str) -> str:
    return text.lower()


def _tokenize(text: str) -> List[str]:
    return re.split(" |-", text)


def _normalize_answer(text: str) -> str:
    """Lower text and remove punctuation, articles and extra whitespace."""

    parts = [
        _white_space_fix(
            _remove_articles(_normalize_number(_remove_punc(_lower(token))))
        )
        for token in _tokenize(text)
    ]
    parts = [part for part in parts if part.strip()]
    normalized = " ".join(parts).strip()
    return normalized


def _is_number(text: str) -> bool:
    try:
        float(text)
        return True
    except ValueError:
        return False


def _normalize_number(text: str) -> str:
    if _is_number(text):
        return str(float(text))
    else:
        return text


def _answer_to_bags(
    answer: Union[str, List[str], Tuple[str, ...]]
) -> Tuple[List[str], List[Set[str]]]:
    if isinstance(answer, (list, tuple)):
        raw_spans = answer
    else:
        raw_spans = [answer]
    normalized_spans: List[str] = []
    token_bags = []
    for raw_span in raw_spans:
        normalized_span = _normalize_answer(raw_span)
        normalized_spans.append(normalized_span)
        token_bags.append(set(normalized_span.split()))
    return normalized_spans, token_bags


def _align_bags(predicted: List[Set[str]], gold: List[Set[str]]) -> List[float]:
    """
    Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
    between them and gets maximum metric values over all the answers.
    """
    scores = np.zeros([len(gold), len(predicted)])
    for gold_index, gold_item in enumerate(gold):
        for pred_index, pred_item in enumerate(predicted):
            if _match_numbers_if_present(gold_item, pred_item):
                scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item)
    row_ind, col_ind = linear_sum_assignment(-scores)

    max_scores = np.zeros([max(len(gold), len(predicted))])
    for row, column in zip(row_ind, col_ind):
        max_scores[row] = max(max_scores[row], scores[row, column])
    return max_scores


def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float:
    intersection = len(gold_bag.intersection(predicted_bag))
    if not predicted_bag:
        precision = 1.0
    else:
        precision = intersection / float(len(predicted_bag))
    if not gold_bag:
        recall = 1.0
    else:
        recall = intersection / float(len(gold_bag))
    f1 = (
        (2 * precision * recall) / (precision + recall)
        if not (precision == 0.0 and recall == 0.0)
        else 0.0
    )
    return f1


def _match_numbers_if_present(gold_bag: Set[str], predicted_bag: Set[str]) -> bool:
    gold_numbers = set()
    predicted_numbers = set()
    for word in gold_bag:
        if _is_number(word):
            gold_numbers.add(word)
    for word in predicted_bag:
        if _is_number(word):
            predicted_numbers.add(word)
    if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
        return True
    return False


def get_metrics(
    predicted: Union[str, List[str], Tuple[str, ...]],
    gold: Union[str, List[str], Tuple[str, ...]],
) -> Tuple[float, float]:
    """
    Takes a predicted answer and a gold answer (that are both either a string or a list of
    strings), and returns exact match and the DROP F1 metric for the prediction.  If you are
    writing a script for evaluating objects in memory (say, the output of predictions during
    validation, or while training), this is the function you want to call, after using
    :func:`answer_json_to_strings` when reading the gold answer from the released data file.
    """
    predicted_bags = _answer_to_bags(predicted)
    gold_bags = _answer_to_bags(gold)

    if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(
        gold_bags[0]
    ):
        exact_match = 1.0
    else:
        exact_match = 0.0

    f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1])
    f1 = np.mean(f1_per_bag)
    f1 = round(f1, 2)
    return exact_match, f1


def evaluate_strings(prediction, gold):
    if type(prediction) != list and type(prediction) != str:
        prediction = str(prediction)
    if type(gold) != list and type(gold) != str:
        gold = str(gold)
    try:
        predicted_bags = _answer_to_bags(prediction)
        gold_bags = _answer_to_bags(gold)
        f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1])
        f1 = np.mean(f1_per_bag)
    except Exception:
        f1 = 0.0
    return f1