Spaces:
Runtime error
Runtime error
File size: 21,510 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from .configuration_utils import PretrainedConfig
from .utils import logging
logger = logging.get_logger(__name__)
@dataclass
class Cache:
"""
Base, abstract class for all caches. The actual data structure is specific to each subclass.
"""
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
Return:
A tuple containing the updated key and value states.
"""
raise NotImplementedError("Make sure to implement `update` in a subclass.")
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states, if there is any."""
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx)
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
@property
def seen_tokens(self):
logger.warning_once(
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
"model input instead."
)
if hasattr(self, "_seen_tokens"):
return self._seen_tokens
else:
return None
class DynamicCache(Cache):
"""
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
"""
def __init__(self) -> None:
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
return len(self.key_cache)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
key_states_fp: torch.Tensor = None,
value_states_fp: torch.Tensor = None,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[2]
window_length = cache_kwargs['window_length'] if isinstance(cache_kwargs, dict) and 'window_length' in cache_kwargs else 32
if key_states_fp is None or value_states_fp is None:
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
else:
layer_idx *= 2
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.key_cache.append(key_states_fp[:, :, -window_length:, :])
self.value_cache.append(value_states)
self.value_cache.append(value_states_fp[:, :, -window_length:, :])
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-1)
key_states_fp = torch.cat([self.key_cache[layer_idx+1], key_states_fp], dim=2)
self.key_cache[layer_idx+1] = key_states_fp[:, :, -window_length:, :]
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-1)
value_states_fp = torch.cat([self.value_cache[layer_idx+1], value_states_fp], dim=2)
self.value_cache[layer_idx+1] = value_states_fp[:, :, -window_length:, :]
return self.key_cache[layer_idx], key_states_fp, self.value_cache[layer_idx], value_states_fp
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-1]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
return None
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
legacy_cache = ()
for layer_idx in range(len(self)):
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
return legacy_cache
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None) -> "DynamicCache":
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
cache = cls()
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states = past_key_values[layer_idx]
cache.update(key_states, value_states, layer_idx)
return cache
class SinkCache(Cache):
"""
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
Parameters:
window_length (`int`):
The length of the context window.
num_sink_tokens (`int`):
The number of sink tokens. See the original paper for more information.
"""
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.window_length = window_length
self.num_sink_tokens = num_sink_tokens
self.cos_sin_cache = {}
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> torch.Tensor:
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
return rotated_key_states
def _get_rerotation_cos_sin(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
if key_states.shape[-2] not in self.cos_sin_cache:
# Upcast to float32 temporarily for better accuracy
cos = cos.to(torch.float32)
sin = sin.to(torch.float32)
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
self.cos_sin_cache[key_states.shape[-2]] = (
rerotation_cos.to(key_states.dtype).unsqueeze(0),
rerotation_sin.to(key_states.dtype).unsqueeze(0),
)
return self.cos_sin_cache[key_states.shape[-2]]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.window_length
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
rotation as the tokens are shifted.
Return:
A tuple containing the updated key and value states.
"""
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
# with partially rotated position embeddings, like Phi or Persimmon.
sin = cache_kwargs.get("sin")
cos = cache_kwargs.get("cos")
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
using_rope = cos is not None and sin is not None
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# [bsz, num_heads, seq_len, head_dim]
if len(self.key_cache) <= layer_idx:
# Empty cache
self.key_cache.append(key_states)
self.value_cache.append(value_states)
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
# Growing cache
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
else:
# Shifting cache
keys_to_keep = self.key_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
]
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
if using_rope:
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
key_states, cos[: self.window_length], sin[: self.window_length]
)
if partial_rotation_size is not None:
keys_to_keep, keys_pass = (
keys_to_keep[..., :partial_rotation_size],
keys_to_keep[..., partial_rotation_size:],
)
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
if partial_rotation_size is not None:
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
values_to_keep = self.value_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
]
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
class StaticCache(Cache):
"""
Static Cache class to be used with `torch.compile(model)`.
Parameters:
config (`PretrainedConfig):
The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`):
The device on which the cache should be initialized. Should be the same as the layer.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
super().__init__()
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
)
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for. Kept for backward compatibility
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
to know how much of the cache it should overwrite.
Return:
A tuple containing the updated key and value states.
"""
new_cache_positions = cache_kwargs.get("cache_position")
k_out = self.key_cache
v_out = self.value_cache
k_out[:, :, new_cache_positions] = key_states
v_out[:, :, new_cache_positions] = value_states
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
# TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
# https://github.com/pytorch/pytorch/issues/120248 is fixed
return (self.key_cache[0, 0].any(dim=-1)).sum()
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
return self.max_cache_len
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
device = self.key_cache.device
self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
device = self.value_cache.device
self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
def to_legacy_cache(self):
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
return None
|