Spaces:
Runtime error
Runtime error
File size: 238,306 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import copy
import functools
import gc
import importlib.metadata
import inspect
import itertools
import json
import os
import re
import shutil
import tempfile
import warnings
from contextlib import contextmanager
from dataclasses import dataclass
from functools import partial, wraps
from threading import Thread
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from zipfile import is_zipfile
import torch
from packaging import version
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss, Identity
from torch.utils.checkpoint import checkpoint
from .activations import get_activation
from .configuration_utils import PretrainedConfig
from .dynamic_module_utils import custom_object_save
from .generation import GenerationConfig, GenerationMixin
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
from .pytorch_utils import ( # noqa: F401
Conv1D,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
id_tensor_storage,
is_torch_greater_or_equal_than_1_13,
prune_conv1d_layer,
prune_layer,
prune_linear_layer,
)
from .quantizers import AutoHfQuantizer, HfQuantizer
from .quantizers.quantizers_utils import get_module_from_name
from .safetensors_conversion import auto_conversion
from .utils import (
ADAPTER_SAFE_WEIGHTS_NAME,
ADAPTER_WEIGHTS_NAME,
CONFIG_NAME,
DUMMY_INPUTS,
FLAX_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
ModelOutput,
PushToHubMixin,
cached_file,
copy_func,
download_url,
extract_commit_hash,
has_file,
is_accelerate_available,
is_bitsandbytes_available,
is_flash_attn_2_available,
is_offline_mode,
is_optimum_available,
is_peft_available,
is_remote_url,
is_safetensors_available,
is_torch_sdpa_available,
is_torch_xla_available,
logging,
replace_return_docstrings,
strtobool,
)
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
from .utils.import_utils import (
ENV_VARS_TRUE_VALUES,
is_sagemaker_mp_enabled,
is_torch_fx_proxy,
is_torchdynamo_compiling,
)
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
if is_accelerate_available():
from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
from accelerate.hooks import add_hook_to_module
from accelerate.utils import (
check_tied_parameters_on_same_device,
extract_model_from_parallel,
find_tied_parameters,
get_balanced_memory,
get_max_memory,
load_offloaded_weights,
offload_weight,
save_offload_index,
set_module_tensor_to_device,
)
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import load_file as safe_load_file
from safetensors.torch import save_file as safe_save_file
logger = logging.get_logger(__name__)
_init_weights = True
def is_fsdp_enabled():
return (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
)
def is_local_dist_rank_0():
return (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and int(os.environ.get("LOCAL_RANK", -1)) == 0
)
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
from smdistributed.modelparallel import __version__ as SMP_VERSION
IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
IS_SAGEMAKER_MP_POST_1_10 = False
if is_peft_available():
from .utils import find_adapter_config_file
TORCH_INIT_FUNCTIONS = {
"uniform_": nn.init.uniform_,
"normal_": nn.init.normal_,
"trunc_normal_": nn.init.trunc_normal_,
"constant_": nn.init.constant_,
"xavier_uniform_": nn.init.xavier_uniform_,
"xavier_normal_": nn.init.xavier_normal_,
"kaiming_uniform_": nn.init.kaiming_uniform_,
"kaiming_normal_": nn.init.kaiming_normal_,
"uniform": nn.init.uniform,
"normal": nn.init.normal,
"xavier_uniform": nn.init.xavier_uniform,
"xavier_normal": nn.init.xavier_normal,
"kaiming_uniform": nn.init.kaiming_uniform,
"kaiming_normal": nn.init.kaiming_normal,
}
@contextmanager
def no_init_weights(_enable=True):
"""
Context manager to globally disable weight initialization to speed up loading large models.
TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
"""
global _init_weights
old_init_weights = _init_weights
if _enable:
_init_weights = False
def _skip_init(*args, **kwargs):
pass
# # Save the original initialization functions
for name, init_func in TORCH_INIT_FUNCTIONS.items():
setattr(torch.nn.init, name, _skip_init)
try:
yield
finally:
_init_weights = old_init_weights
if _enable:
# # Restore the original initialization functions
for name, init_func in TORCH_INIT_FUNCTIONS.items():
setattr(torch.nn.init, name, init_func)
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
try:
return next(parameter.parameters()).device
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].device
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
"""
Returns the first parameter dtype (can be non-floating) or asserts if none were found.
"""
try:
return next(parameter.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch > 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
"""
Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
"""
last_dtype = None
for t in parameter.parameters():
last_dtype = t.dtype
if t.is_floating_point():
# Adding fix for https://github.com/pytorch/xla/issues/4152
# Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
# and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
# NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo
if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
return torch.bfloat16
if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
if t.dtype == torch.float:
return torch.bfloat16
if t.dtype == torch.double:
return torch.float32
return t.dtype
if last_dtype is not None:
# if no floating dtype was found return whatever the first dtype is
return last_dtype
# For nn.DataParallel compatibility in PyTorch > 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
last_tuple = None
for tuple in gen:
last_tuple = tuple
if tuple[1].is_floating_point():
return tuple[1].dtype
if last_tuple is not None:
# fallback to the last dtype
return last_tuple[1].dtype
# fallback to buffer dtype
for t in parameter.buffers():
last_dtype = t.dtype
if t.is_floating_point():
return t.dtype
return last_dtype
def get_state_dict_float_dtype(state_dict):
"""
Returns the first found floating dtype in `state_dict` or asserts if none were found.
"""
for t in state_dict.values():
if t.is_floating_point():
return t.dtype
raise ValueError("couldn't find any floating point dtypes in state_dict")
def get_state_dict_dtype(state_dict):
"""
Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
"""
for t in state_dict.values():
if t.is_floating_point():
return t.dtype
# if no floating dtype was found return whatever the first dtype is
else:
return next(state_dict.values()).dtype
def dtype_byte_size(dtype):
"""
Returns the size (in bytes) occupied by one parameter of type `dtype`.
Example:
```py
>>> dtype_byte_size(torch.float32)
4
```
"""
if dtype == torch.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def shard_checkpoint(
state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
<Tip warning={true}>
If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
have a size greater than `max_shard_size`.
</Tip>
Args:
state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
(like `"5MB"`).
weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
The name of the model save file.
"""
max_shard_size = convert_file_size_to_int(max_shard_size)
sharded_state_dicts = [{}]
last_block_size = 0
total_size = 0
storage_id_to_block = {}
for key, weight in state_dict.items():
# when bnb serialization is used the weights in the state dict can be strings
# check: https://github.com/huggingface/transformers/pull/24416 for more details
if isinstance(weight, str):
continue
else:
storage_id = id_tensor_storage(weight)
# If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
if storage_id in storage_id_to_block:
block_id = storage_id_to_block[storage_id]
sharded_state_dicts[block_id][key] = weight
continue
weight_size = weight.numel() * dtype_byte_size(weight.dtype)
# If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
# weight in the current shard.
if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
sharded_state_dicts.append({})
last_block_size = 0
sharded_state_dicts[-1][key] = weight
last_block_size += weight_size
total_size += weight_size
storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
# If we only have one shard, we return it
if len(sharded_state_dicts) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
shard_file = shard_file.replace(
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
)
shards[shard_file] = shard
for key in shard.keys():
weight_map[key] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
return shards, index
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
"""
This is the same as
[`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
but for a sharded checkpoint.
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
model (`torch.nn.Module`): The model in which to load the checkpoint.
folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
strict (`bool`, *optional`, defaults to `True`):
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
prefer_safe (`bool`, *optional*, defaults to `False`)
If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
Returns:
`NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
- `missing_keys` is a list of str containing the missing keys
- `unexpected_keys` is a list of str containing the unexpected keys
"""
# Load the index
index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
index_present = os.path.isfile(index_file)
safe_index_present = os.path.isfile(safe_index_file)
if not index_present and not (safe_index_present and is_safetensors_available()):
filenames = (
(WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
)
raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")
load_safe = False
if safe_index_present:
if prefer_safe:
if is_safetensors_available():
load_safe = True # load safe due to preference
else:
logger.warning(
f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
)
elif not index_present:
load_safe = True # load safe since we have no other choice
load_index = safe_index_file if load_safe else index_file
with open(load_index, "r", encoding="utf-8") as f:
index = json.load(f)
shard_files = list(set(index["weight_map"].values()))
# If strict=True, error before loading any of the state dicts.
loaded_keys = index["weight_map"].keys()
model_keys = model.state_dict().keys()
missing_keys = [key for key in model_keys if key not in loaded_keys]
unexpected_keys = [key for key in loaded_keys if key not in model_keys]
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
if len(missing_keys) > 0:
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
error_message += f"\nMissing key(s): {str_missing_keys}."
if len(unexpected_keys) > 0:
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
error_message += f"\nMissing key(s): {str_unexpected_keys}."
raise RuntimeError(error_message)
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
for shard_file in shard_files:
state_dict = loader(os.path.join(folder, shard_file))
model.load_state_dict(state_dict, strict=False)
# Make sure memory is freed before we load the next state dict.
del state_dict
gc.collect()
# Return the same thing as PyTorch load_state_dict function.
return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)
def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False):
"""
Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
"""
if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
# Check format of the archive
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
raise OSError(
f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
"you save your model with the `save_pretrained` method."
)
return safe_load_file(checkpoint_file)
try:
if (
(is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0)
or (is_fsdp_enabled() and not is_local_dist_rank_0())
) and not is_quantized:
map_location = "meta"
else:
map_location = "cpu"
extra_args = {}
# mmap can only be used with files serialized with zipfile-based format.
if (
isinstance(checkpoint_file, str)
and map_location != "meta"
and version.parse(torch.__version__) >= version.parse("2.1.0")
and is_zipfile(checkpoint_file)
):
extra_args = {"mmap": True}
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
return torch.load(
checkpoint_file,
map_location=map_location,
**weights_only_kwarg,
**extra_args,
)
except Exception as e:
try:
with open(checkpoint_file) as f:
if f.read(7) == "version":
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
"model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
f"at '{checkpoint_file}'. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
)
def set_initialized_submodules(model, state_dict_keys):
"""
Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
dict.
"""
not_initialized_submodules = {}
for module_name, module in model.named_modules():
loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
if loaded_keys.issuperset(module.state_dict()):
module._is_hf_initialized = True
else:
not_initialized_submodules[module_name] = module
return not_initialized_submodules
def _end_ptr(tensor: torch.Tensor) -> int:
# extract the end of the pointer if the tensor is a slice of a bigger tensor
if tensor.nelement():
stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size()
else:
stop = tensor.data_ptr()
return stop
def _get_tied_weight_keys(module: nn.Module, prefix=""):
tied_weight_keys = []
if getattr(module, "_tied_weights_keys", None) is not None:
names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys]
tied_weight_keys.extend(names)
if getattr(module, "_dynamic_tied_weights_keys", None) is not None:
names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys]
tied_weight_keys.extend(names)
for name, submodule in module.named_children():
local_prefix = f"{prefix}.{name}" if prefix else name
tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix))
return tied_weight_keys
def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]:
filtered_tensors = []
for shared in tensors:
if len(shared) < 2:
filtered_tensors.append(shared)
continue
areas = []
for name in shared:
tensor = state_dict[name]
areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
areas.sort()
_, last_stop, last_name = areas[0]
filtered_tensors.append({last_name})
for start, stop, name in areas[1:]:
if start >= last_stop:
filtered_tensors.append({name})
else:
filtered_tensors[-1].add(name)
last_stop = stop
disjoint_tensors = []
shared_tensors = []
for tensors in filtered_tensors:
if len(tensors) == 1:
disjoint_tensors.append(tensors.pop())
else:
shared_tensors.append(tensors)
return shared_tensors, disjoint_tensors
def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]:
shared_tensors = []
identical = []
for shared in tensors:
if len(shared) < 2:
continue
areas = collections.defaultdict(set)
for name in shared:
tensor = state_dict[name]
area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor))
areas[area].add(name)
if len(areas) == 1:
identical.append(shared)
else:
shared_tensors.append(shared)
return shared_tensors, identical
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
error_msgs = []
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: nn.Module, state_dict, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
if is_deepspeed_zero3_enabled():
import deepspeed
# In sharded models, each shard has only part of the full state_dict, so only gather
# parameters that are in the current state_dict.
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
if len(params_to_gather) > 0:
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
if torch.distributed.get_rank() == 0:
module._load_from_state_dict(*args)
else:
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, state_dict, prefix + name + ".")
load(model_to_load, state_dict, prefix=start_prefix)
# Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
# it's safe to delete it.
del state_dict
return error_msgs
def find_submodule_and_param_name(model, long_key, start_prefix):
"""
A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
from the start of the key
"""
if len(start_prefix) > 0 and long_key.startswith(start_prefix):
long_key = ".".join(long_key.split(".")[1:])
split_key = long_key.split(".")
submodule = model
while len(split_key) > 1:
if hasattr(submodule, split_key[0]):
submodule = getattr(submodule, split_key[0])
del split_key[0]
else:
submodule = None
break
if submodule == model:
submodule = None
return submodule, split_key[0]
def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
"""
Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.
`start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
`bert.pooler.dense.weight`
"""
# dematerialize param storage for keys that are going to be replaced by state_dict, by
# putting those on the meta device
for k in loaded_state_dict_keys:
submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
if submodule is not None:
# selectively switch to the meta device only those params/buffers that will
# be next replaced from state_dict. This a complex way to do p.to_("meta")
# since we have no in-place to_ for tensors.
new_val = getattr(submodule, param_name)
if isinstance(new_val, torch.nn.Parameter):
# isinstance returns False for Params on meta device, so switch after the check
new_val = torch.nn.Parameter(new_val.to("meta"))
else:
new_val = new_val.to("meta")
setattr(submodule, param_name, new_val)
def _load_state_dict_into_meta_model(
model,
state_dict,
loaded_state_dict_keys, # left for now but could be removed, see below
start_prefix,
expected_keys,
device_map=None,
offload_folder=None,
offload_index=None,
state_dict_folder=None,
state_dict_index=None,
dtype=None,
hf_quantizer=None,
is_safetensors=False,
keep_in_fp32_modules=None,
unexpected_keys=None, # passing `unexpected` for cleanup from quantization items
):
"""
This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
params back to the normal device, but only for `loaded_state_dict_keys`.
`start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
`bert.pooler.dense.weight`
"""
# XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
# - deepspeed zero 3 support
# - need to copy metadata if any - see _load_state_dict_into_model
# - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
# - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
# they won't get loaded.
error_msgs = []
old_keys = []
new_keys = []
is_quantized = hf_quantizer is not None
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
for param_name, param in state_dict.items():
# First part of the test is always true as load_state_dict_keys always contains state_dict keys.
if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
continue
if param_name.startswith(start_prefix):
param_name = param_name[len(start_prefix) :]
module_name = param_name
set_module_kwargs = {}
# We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
# in int/uint/bool and not cast them.
if dtype is not None and torch.is_floating_point(param):
if (
keep_in_fp32_modules is not None
and any(
module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
)
and dtype == torch.float16
):
param = param.to(torch.float32)
# For backward compatibility with older versions of `accelerate`
# TODO: @sgugger replace this check with version check at the next `accelerate` release
if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
set_module_kwargs["dtype"] = torch.float32
else:
param = param.to(dtype)
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
# uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
# Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
old_param = model
splits = param_name.split(".")
for split in splits:
old_param = getattr(old_param, split)
if old_param is None:
break
if old_param is not None:
if dtype is None:
param = param.to(old_param.dtype)
if old_param.is_contiguous():
param = param.contiguous()
set_module_kwargs["value"] = param
if device_map is None:
param_device = "cpu"
else:
# find next higher level module that is defined in device_map:
# bert.lm_head.weight -> bert.lm_head -> bert -> ''
while len(module_name) > 0 and module_name not in device_map:
module_name = ".".join(module_name.split(".")[:-1])
if module_name == "" and "" not in device_map:
# TODO: group all errors and raise at the end.
raise ValueError(f"{param_name} doesn't have any device set.")
param_device = device_map[module_name]
if param_device == "disk":
if not is_safetensors:
offload_index = offload_weight(param, param_name, offload_folder, offload_index)
elif param_device == "cpu" and state_dict_index is not None:
state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
elif (
not is_quantized
or (not hf_quantizer.requires_parameters_quantization)
or (
not hf_quantizer.check_quantized_param(
model, param, param_name, state_dict, param_device=param_device, device_map=device_map
)
)
):
# For backward compatibility with older versions of `accelerate` and for non-quantized params
set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
else:
hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
# For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU
# and then cast it to CPU to avoid excessive memory usage on each GPU
# in comparison to the sharded model across GPUs.
if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
module, tensor_name = get_module_from_name(model, param_name)
value = getattr(module, tensor_name)
value = type(value)(value.data.to("cpu"), **value.__dict__)
setattr(module, tensor_name, value)
# TODO: consider removing used param_parts from state_dict before return
return error_msgs, offload_index, state_dict_index
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
if variant is not None:
splits = weights_name.split(".")
splits = splits[:-1] + [variant] + splits[-1:]
weights_name = ".".join(splits)
return weights_name
class ModuleUtilsMixin:
"""
A few utilities for `torch.nn.Modules`, to be used as a mixin.
"""
@staticmethod
def _hook_rss_memory_pre_forward(module, *args, **kwargs):
try:
import psutil
except ImportError:
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
process = psutil.Process(os.getpid())
mem = process.memory_info()
module.mem_rss_pre_forward = mem.rss
return None
@staticmethod
def _hook_rss_memory_post_forward(module, *args, **kwargs):
try:
import psutil
except ImportError:
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
process = psutil.Process(os.getpid())
mem = process.memory_info()
module.mem_rss_post_forward = mem.rss
mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
return None
def add_memory_hooks(self):
"""
Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
with `model.reset_memory_hooks_state()`.
"""
for module in self.modules():
module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
module.register_forward_hook(self._hook_rss_memory_post_forward)
self.reset_memory_hooks_state()
def reset_memory_hooks_state(self):
"""
Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
"""
for module in self.modules():
module.mem_rss_diff = 0
module.mem_rss_post_forward = 0
module.mem_rss_pre_forward = 0
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
return get_parameter_device(self)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
"""
Invert an attention mask (e.g., switches 0. and 1.).
Args:
encoder_attention_mask (`torch.Tensor`): An attention mask.
Returns:
`torch.Tensor`: The inverted attention mask.
"""
if encoder_attention_mask.dim() == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
return encoder_extended_attention_mask
@staticmethod
def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
if device is not None:
warnings.warn(
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
else:
device = attention_mask.device
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
causal_mask,
],
axis=-1,
)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
return extended_attention_mask
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
if dtype is None:
dtype = self.dtype
if not (attention_mask.dim() == 2 and self.config.is_decoder):
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
if device is not None:
warnings.warn(
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
input_shape, attention_mask, device
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
return extended_attention_mask
def get_head_mask(
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
) -> Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
is_attention_chunked (`bool`, *optional*, defaults to `False`):
Whether or not the attentions scores are computed by chunks or not.
Returns:
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility
return head_mask
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
"""
Get number of (optionally, trainable or non-embeddings) parameters in the module.
Args:
only_trainable (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of trainable parameters
exclude_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of non-embeddings parameters
Returns:
`int`: The number of parameters.
"""
if exclude_embeddings:
embedding_param_names = [
f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
]
total_parameters = [
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
]
else:
total_parameters = list(self.parameters())
total_numel = []
is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
if is_loaded_in_4bit:
if is_bitsandbytes_available():
import bitsandbytes as bnb
else:
raise ValueError(
"bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
" make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
)
for param in total_parameters:
if param.requires_grad or not only_trainable:
# For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
# used for the 4bit quantization (uint8 tensors are stored)
if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
if hasattr(param, "element_size"):
num_bytes = param.element_size()
elif hasattr(param, "quant_storage"):
num_bytes = param.quant_storage.itemsize
else:
num_bytes = 1
total_numel.append(param.numel() * 2 * num_bytes)
else:
total_numel.append(param.numel())
return sum(total_numel)
def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
"""
Helper function to estimate the total number of tokens from the model inputs.
Args:
inputs (`dict`): The model inputs.
Returns:
`int`: The total number of tokens.
"""
if not hasattr(self, "warnings_issued"):
self.warnings_issued = {}
if self.main_input_name in input_dict:
return input_dict[self.main_input_name].numel()
elif "estimate_tokens" not in self.warnings_issued:
logger.warning(
"Could not estimate the number of tokens of the input, floating-point operations will not be computed"
)
self.warnings_issued["estimate_tokens"] = True
return 0
def floating_point_ops(
self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
) -> int:
"""
Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
Args:
batch_size (`int`):
The batch size for the forward pass.
sequence_length (`int`):
The number of tokens in each line of the batch.
exclude_embeddings (`bool`, *optional*, defaults to `True`):
Whether or not to count embedding and softmax operations.
Returns:
`int`: The number of floating-point operations.
"""
return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
r"""
Base class for all models.
[`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
downloading and saving models as well as a few methods common to all models to:
- resize the input embeddings,
- prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
for this model architecture.
- **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
taking as arguments:
- **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
- **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
- **path** (`str`) -- A path to the TensorFlow checkpoint.
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
classes of the same architecture adding modules on top of the base model.
- **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
models, `pixel_values` for vision models and `input_values` for speech models).
"""
config_class = None
base_model_prefix = ""
main_input_name = "input_ids"
model_tags = None
_auto_class = None
_no_split_modules = None
_skip_keys_device_placement = None
_keep_in_fp32_modules = None
# a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
# keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
_keys_to_ignore_on_load_missing = None
# a list of `re` patterns of `state_dict` keys that should be removed from the list of
# unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
# warnings.
_keys_to_ignore_on_load_unexpected = None
# a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
# trained, but which are either deterministic or tied variables)
_keys_to_ignore_on_save = None
# a list of `state_dict` keys that are potentially tied to another key in the state_dict.
_tied_weights_keys = None
is_parallelizable = False
supports_gradient_checkpointing = False
# Flash Attention 2 support
_supports_flash_attn_2 = False
# SDPA support
_supports_sdpa = False
# Has support for a `Cache` instance as `past_key_values`
_supports_cache_class = False
@property
def dummy_inputs(self) -> Dict[str, torch.Tensor]:
"""
`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
"""
return {"input_ids": torch.tensor(DUMMY_INPUTS)}
@property
def framework(self) -> str:
"""
:str: Identifies that this is a PyTorch model.
"""
return "pt"
def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
super().__init__()
if not isinstance(config, PretrainedConfig):
raise ValueError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
# Save config and origin of the pretrained weights if given in model
config = self._autoset_attn_implementation(
config, torch_dtype=torch.get_default_dtype(), check_device_map=False
)
self.config = config
self.name_or_path = config.name_or_path
self.warnings_issued = {}
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
# Overwrite the class attribute to make it an instance attribute, so models like
# `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
# when a different component (e.g. language_model) is used.
self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
def post_init(self):
"""
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
modules properly initialized (such as weight initialization).
"""
self.init_weights()
self._backward_compatibility_gradient_checkpointing()
def _backward_compatibility_gradient_checkpointing(self):
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
self.gradient_checkpointing_enable()
# Remove the attribute now that is has been consumed, so it's no saved in the config.
delattr(self.config, "gradient_checkpointing")
def add_model_tags(self, tags: Union[List[str], str]) -> None:
r"""
Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
not overwrite existing tags in the model.
Args:
tags (`Union[List[str], str]`):
The desired tags to inject in the model
Examples:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("google-bert/bert-base-cased")
model.add_model_tags(["custom", "custom-bert"])
# Push the model to your namespace with the name "my-custom-bert".
model.push_to_hub("my-custom-bert")
```
"""
if isinstance(tags, str):
tags = [tags]
if self.model_tags is None:
self.model_tags = []
for tag in tags:
if tag not in self.model_tags:
self.model_tags.append(tag)
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
Args:
torch_dtype (`torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype.
"""
torch_dtype = kwargs.pop("torch_dtype", None)
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
# override default dtype if needed
dtype_orig = None
if torch_dtype is not None:
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
config = copy.deepcopy(config) # We do not want to modify the config inplace in _from_config.
config._attn_implementation = kwargs.pop("attn_implementation", None)
config = cls._autoset_attn_implementation(
config,
use_flash_attention_2=use_flash_attention_2,
check_device_map=False,
torch_dtype=torch_dtype,
)
if is_deepspeed_zero3_enabled():
import deepspeed
logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
# this immediately partitions the model across all gpus, to avoid the overhead in time
# and memory copying it on CPU or each GPU first
with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
model = cls(config, **kwargs)
else:
model = cls(config, **kwargs)
# restore default dtype if it was modified
if dtype_orig is not None:
torch.set_default_dtype(dtype_orig)
return model
@classmethod
def _autoset_attn_implementation(
cls,
config,
use_flash_attention_2: bool = False,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
check_device_map: bool = True,
):
"""
Automatically checks and dispatches to a default attention implementation. In order of priority:
1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
4. The default model's implementation otherwise (`LlamaAttention` for example) .
"""
# Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
# The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
# The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
requested_attn_implementation = None
if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
raise ValueError(
f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
)
if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
if cls._supports_flash_attn_2:
message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
if cls._supports_sdpa:
message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
raise ValueError(message + ".")
# If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
requested_attn_implementation = config._attn_implementation_internal
if use_flash_attention_2:
logger.warning_once(
'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
)
config._attn_implementation = "flash_attention_2"
if config._attn_implementation == "flash_attention_2":
cls._check_and_enable_flash_attn_2(
config,
torch_dtype=torch_dtype,
device_map=device_map,
hard_check_only=False,
check_device_map=check_device_map,
)
elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available():
# use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
config = cls._check_and_enable_sdpa(
config,
hard_check_only=False if requested_attn_implementation is None else True,
)
else:
config._attn_implementation = "eager"
return config
@classmethod
def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
"""
Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
under specific dtype.
Args:
dtype (`torch.dtype`):
a floating dtype to set to.
Returns:
`torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
modified. If it wasn't, returns `None`.
Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
`torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
"""
if not dtype.is_floating_point:
raise ValueError(
f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
)
logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
dtype_orig = torch.get_default_dtype()
torch.set_default_dtype(dtype)
return dtype_orig
@property
def base_model(self) -> nn.Module:
"""
`torch.nn.Module`: The main body of the model.
"""
return getattr(self, self.base_model_prefix, self)
@classmethod
def can_generate(cls) -> bool:
"""
Returns whether this model can generate sequences with `.generate()`.
Returns:
`bool`: Whether this model can generate sequences with `.generate()`.
"""
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
# Alternativelly, the model can also have a custom `generate` function.
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
return False
return True
@classmethod
def _check_and_enable_flash_attn_2(
cls,
config,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
check_device_map: bool = True,
hard_check_only: bool = False,
) -> PretrainedConfig:
"""
Checks the availability of Flash Attention 2 and compatibility with the current model.
If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
"""
if not cls._supports_flash_attn_2:
raise ValueError(
f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
" or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
)
if not is_flash_attn_2_available():
preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."
if importlib.util.find_spec("flash_attn") is None:
raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")
flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
if torch.version.cuda:
if flash_attention_version < version.parse("2.1.0"):
raise ImportError(
f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
)
else:
raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
elif torch.version.hip:
if flash_attention_version < version.parse("2.0.4"):
raise ImportError(
f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
)
else:
raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
if _is_bettertransformer:
raise ValueError(
"Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
)
if torch_dtype is None:
logger.warning_once(
"You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
)
elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
logger.warning_once(
"Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
)
# The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
# or the model may be initialized under the context manager `with torch.device("cuda"):`.
if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
if torch.cuda.is_available():
logger.warning_once(
"You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
" after initializing it on CPU with `model.to('cuda')`."
)
else:
raise ValueError(
"You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
"This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
"or initialising the model on CPU and then moving it to GPU."
)
elif (
check_device_map
and device_map is not None
and isinstance(device_map, dict)
and ("cpu" in device_map.values() or "disk" in device_map.values())
):
raise ValueError(
"You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
"initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
)
if not hard_check_only:
config._attn_implementation = "flash_attention_2"
return config
@classmethod
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
"""
Checks the availability of SDPA for a given model.
If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
"""
if hard_check_only:
if not cls._supports_sdpa:
raise ValueError(
f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
" Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
)
if not is_torch_sdpa_available():
raise ImportError(
"PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
)
if not is_torch_sdpa_available() or not cls._supports_sdpa:
return config
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
if _is_bettertransformer:
return config
if not hard_check_only:
config._attn_implementation = "sdpa"
return config
def enable_input_require_grads(self):
"""
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
the model weights fixed.
"""
def make_inputs_require_grads(module, input, output):
output.requires_grad_(True)
self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
def disable_input_require_grads(self):
"""
Removes the `_require_grads_hook`.
"""
self._require_grads_hook.remove()
def get_input_embeddings(self) -> nn.Module:
"""
Returns the model's input embeddings.
Returns:
`nn.Module`: A torch module mapping vocabulary to hidden states.
"""
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
return base_model.get_input_embeddings()
else:
raise NotImplementedError
def set_input_embeddings(self, value: nn.Module):
"""
Set model's input embeddings.
Args:
value (`nn.Module`): A module mapping vocabulary to hidden states.
"""
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
base_model.set_input_embeddings(value)
else:
raise NotImplementedError
def get_output_embeddings(self) -> nn.Module:
"""
Returns the model's output embeddings.
Returns:
`nn.Module`: A torch module mapping hidden states to vocabulary.
"""
return None # Overwrite for models with output embeddings
def _init_weights(self, module):
"""
Initialize the weights. This method should be overridden by derived class and is
the only initialization method that will be called when loading a checkpoint
using `from_pretrained`. Any attempt to initialize outside of this function
will be useless as the torch.nn.init function are all replaced with skip.
"""
pass
def _initialize_weights(self, module):
"""
Initialize the weights if they are not already initialized.
"""
if getattr(module, "_is_hf_initialized", False):
return
self._init_weights(module)
module._is_hf_initialized = True
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
if getattr(self.config, "tie_word_embeddings", True):
output_embeddings = self.get_output_embeddings()
if output_embeddings is not None:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
if hasattr(self, self.base_model_prefix):
self = getattr(self, self.base_model_prefix)
tied_weights = self._tie_encoder_decoder_weights(
self.encoder, self.decoder, self.base_model_prefix, "encoder"
)
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
# attributed not an instance member, therefore modifying it will modify the entire class
# Leading to issues on subsequent calls by different tests or subsequent calls.
self._dynamic_tied_weights_keys = tied_weights
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@staticmethod
def _tie_encoder_decoder_weights(
encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str
):
uninitialized_encoder_weights: List[str] = []
tied_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logger.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
" weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
base_encoder_name: str,
uninitialized_encoder_weights: List[str],
depth=0,
total_decoder_name="",
total_encoder_name="",
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
if hasattr(decoder_pointer, "weight"):
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight")
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias")
encoder_pointer.bias = decoder_pointer.bias
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
encoder_modules
) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
" a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
base_encoder_name,
uninitialized_encoder_weights,
depth=depth + 1,
total_encoder_name=f"{total_encoder_name}.{encoder_name}",
total_decoder_name=f"{total_decoder_name}.{decoder_name}",
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(
decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights
)
if len(uninitialized_encoder_weights) > 0:
logger.warning(
f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
)
return tied_weights
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
"""Tie or clone module weights depending of whether we are using TorchScript or not"""
if self.config.torchscript:
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
else:
output_embeddings.weight = input_embeddings.weight
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
(
0,
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
),
"constant",
0,
)
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
output_embeddings.out_features = input_embeddings.num_embeddings
def _get_no_split_modules(self, device_map: str):
"""
Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
get the underlying `_no_split_modules`.
Args:
device_map (`str`):
The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]
Returns:
`List[str]`: List of modules that should not be split
"""
_no_split_modules = set()
modules_to_check = [self]
while len(modules_to_check) > 0:
module = modules_to_check.pop(-1)
# if the module does not appear in _no_split_modules, we also check the children
if module.__class__.__name__ not in _no_split_modules:
if isinstance(module, PreTrainedModel):
if module._no_split_modules is None:
raise ValueError(
f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
"class needs to implement the `_no_split_modules` attribute."
)
else:
_no_split_modules = _no_split_modules | set(module._no_split_modules)
modules_to_check += list(module.children())
return list(_no_split_modules)
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
) -> nn.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
Return:
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
"""
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
if new_num_tokens is None and pad_to_multiple_of is None:
return model_embeds
# Update base model and current model config
self.config.vocab_size = model_embeds.weight.shape[0]
self.vocab_size = model_embeds.weight.shape[0]
# Tie weights again if needed
self.tie_weights()
return model_embeds
def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
old_embeddings = self.get_input_embeddings()
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
if hasattr(old_embeddings, "_hf_hook"):
hook = old_embeddings._hf_hook
add_hook_to_module(new_embeddings, hook)
old_embeddings_requires_grad = old_embeddings.weight.requires_grad
new_embeddings.requires_grad_(old_embeddings_requires_grad)
self.set_input_embeddings(new_embeddings)
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
# Update new_num_tokens with the actual size of new_embeddings
if pad_to_multiple_of is not None:
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
new_num_tokens = new_embeddings.weight.shape[0]
else:
new_num_tokens = new_embeddings.weight.shape[0]
# if word embeddings are not tied, make sure that lm head is resized as well
if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
old_lm_head = self.get_output_embeddings()
if isinstance(old_lm_head, torch.nn.Embedding):
new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens)
else:
new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
if hasattr(old_lm_head, "_hf_hook"):
hook = old_lm_head._hf_hook
add_hook_to_module(new_lm_head, hook)
old_lm_head_requires_grad = old_lm_head.weight.requires_grad
new_lm_head.requires_grad_(old_lm_head_requires_grad)
self.set_output_embeddings(new_lm_head)
return self.get_input_embeddings()
def _get_resized_embeddings(
self,
old_embeddings: nn.Embedding,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
"""
Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
initialized vectors at the end. Reducing the size will remove vectors from the end
Args:
old_embeddings (`torch.nn.Embedding`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
`torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
Return:
`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
`new_num_tokens` is `None`
"""
if pad_to_multiple_of is not None:
if not isinstance(pad_to_multiple_of, int):
raise ValueError(
f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
)
if new_num_tokens is None:
new_num_tokens = old_embeddings.weight.shape[0]
new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
else:
logger.info(
"You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
" For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
" https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
)
if new_num_tokens is None:
return old_embeddings
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
else:
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
return old_embeddings
if not isinstance(old_embeddings, nn.Embedding):
raise TypeError(
f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
" should either use a different resize function or make sure that `old_embeddings` are an instance of"
f" {nn.Embedding}."
)
# Build new embeddings
# When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
# because the shape of the new embedding layer is used across various modeling files
# as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
# to errors when training.
new_embeddings = nn.Embedding(
new_num_tokens,
old_embedding_dim,
device=old_embeddings.weight.device,
dtype=old_embeddings.weight.dtype,
)
# initialize all new embeddings (in particular added tokens)
self._init_weights(new_embeddings)
# Copy token embeddings from the previous weights
# numbers of tokens to copy
n = min(old_num_tokens, new_num_tokens)
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
params = [old_embeddings.weight, new_embeddings.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
else:
new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
return new_embeddings
def _get_resized_lm_head(
self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
) -> nn.Linear:
"""
Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end
Args:
old_lm_head (`torch.nn.Linear`):
Old lm head liner layer to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
`torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
vocab_size` else `vocab_size, lm_head_dim`.
Return:
`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
`None`
"""
if new_num_tokens is None:
return old_lm_head
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
old_num_tokens, old_lm_head_dim = (
old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
)
else:
old_num_tokens, old_lm_head_dim = (
old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
)
if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
return old_lm_head
if not isinstance(old_lm_head, nn.Linear):
raise TypeError(
f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
" should either use a different resize function or make sure that `old_lm_head` are an instance of"
f" {nn.Linear}."
)
# Build new lm head
new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
has_new_lm_head_bias = old_lm_head.bias is not None
# When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
# because the shape of the new embedding layer is used across various modeling files
# as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
# to errors when training.
new_lm_head = nn.Linear(
*new_lm_head_shape,
bias=has_new_lm_head_bias,
device=old_lm_head.weight.device,
dtype=old_lm_head.weight.dtype,
)
# initialize new lm head (in particular added tokens)
self._init_weights(new_lm_head)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
self._copy_lm_head_original_to_resized(
new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
)
else:
self._copy_lm_head_original_to_resized(
new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
)
return new_lm_head
def _copy_lm_head_original_to_resized(
self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
):
# Copy old lm head weights to new lm head
if not transposed:
new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
else:
new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
# Copy bias weights to new lm head
if has_new_lm_head_bias:
new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
def resize_position_embeddings(self, new_num_position_embeddings: int):
raise NotImplementedError(
f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
)
def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
raise NotImplementedError(
f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
)
def init_weights(self):
"""
If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
initialization logic in `_init_weights`.
"""
# Prune heads if needed
if self.config.pruned_heads:
self.prune_heads(self.config.pruned_heads)
if _init_weights:
# Initialize weights
self.apply(self._initialize_weights)
# Tie weights should be skipped when not initializing all weights
# since from_pretrained(...) calls tie weights anyways
self.tie_weights()
def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
"""
Prunes heads of the base model.
Arguments:
heads_to_prune (`Dict[int, List[int]]`):
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
layer 1 and heads 2 and 3 on layer 2.
"""
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
for layer, heads in heads_to_prune.items():
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON
self.base_model._prune_heads(heads_to_prune)
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
"""
Activates gradient checkpointing for the current model.
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
activations".
We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
Args:
gradient_checkpointing_kwargs (dict, *optional*):
Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
"""
if not self.supports_gradient_checkpointing:
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {"use_reentrant": True}
gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
# For old GC format (transformers < 4.35.0) for models that live on the Hub
# we will fall back to the overwritten `_set_gradient_checkpointing` method
_is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
if not _is_using_old_format:
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
else:
self.apply(partial(self._set_gradient_checkpointing, value=True))
logger.warning(
"You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
"Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
)
if getattr(self, "_hf_peft_config_loaded", False):
# When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
# we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
# When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
# the gradients to make sure the gradient flows.
self.enable_input_require_grads()
def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
is_gradient_checkpointing_set = False
# Apply it on the top-level module in case the top-level modules supports it
# for example, LongT5Stack inherits from `PreTrainedModel`.
if hasattr(self, "gradient_checkpointing"):
self._gradient_checkpointing_func = gradient_checkpointing_func
self.gradient_checkpointing = enable
is_gradient_checkpointing_set = True
for module in self.modules():
if hasattr(module, "gradient_checkpointing"):
module._gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = enable
is_gradient_checkpointing_set = True
if not is_gradient_checkpointing_set:
raise ValueError(
f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
" `gradient_checkpointing` to modules of the model that uses checkpointing."
)
def gradient_checkpointing_disable(self):
"""
Deactivates gradient checkpointing for the current model.
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
activations".
"""
if self.supports_gradient_checkpointing:
# For old GC format (transformers < 4.35.0) for models that live on the Hub
# we will fall back to the overwritten `_set_gradient_checkpointing` methid
_is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
if not _is_using_old_format:
self._set_gradient_checkpointing(enable=False)
else:
logger.warning(
"You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
"Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
)
self.apply(partial(self._set_gradient_checkpointing, value=False))
if getattr(self, "_hf_peft_config_loaded", False):
self.disable_input_require_grads()
@property
def is_gradient_checkpointing(self) -> bool:
"""
Whether gradient checkpointing is activated for this model or not.
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
activations".
"""
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
state_dict: Optional[dict] = None,
save_function: Callable = torch.save,
push_to_hub: bool = False,
max_shard_size: Union[int, str] = "5GB",
safe_serialization: bool = True,
variant: Optional[str] = None,
token: Optional[Union[str, bool]] = None,
save_peft_format: bool = True,
**kwargs,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~PreTrainedModel.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful when in distributed training like
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
the main process to avoid race conditions.
state_dict (nested dictionary of `torch.Tensor`):
The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
save parts of the model or if special precautions need to be taken when recovering the state dictionary
of a model (like when using model parallelism).
save_function (`Callable`):
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
need to replace `torch.save` by another method.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
without CPU OOM issues.
<Tip warning={true}>
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
which will be bigger than `max_shard_size`.
</Tip>
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
variant (`str`, *optional*):
If specified, weights are saved in the format pytorch_model.<variant>.bin.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
save_peft_format (`bool`, *optional*, defaults to `True`):
For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
disable this behaviours by setting `save_peft_format` to `False`.
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
kwargs["token"] = token
_hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)
hf_quantizer = getattr(self, "hf_quantizer", None)
quantization_serializable = (
hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
)
if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
raise ValueError(
f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
" the logger on the traceback to understand the reason why the quantized model is not serializable."
)
if "save_config" in kwargs:
warnings.warn(
"`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
)
is_main_process = kwargs.pop("save_config")
if safe_serialization and not is_safetensors_available():
raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# Only save the model itself if we are using distributed training
model_to_save = unwrap_model(self)
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
# we currently don't use this setting automatically, but may start to use with v5
dtype = get_parameter_dtype(model_to_save)
model_to_save.config.torch_dtype = str(dtype).split(".")[1]
# Attach architecture to the config
model_to_save.config.architectures = [model_to_save.__class__.__name__]
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self.config)
# Save the config
if is_main_process:
if not _hf_peft_config_loaded:
model_to_save.config.save_pretrained(save_directory)
if self.can_generate():
# generation config built from the model config + the model config holds generation kwargs -> generate
# may revert to legacy behavior if the two don't match
if (
model_to_save.generation_config._from_model_config
and model_to_save.config._has_non_default_generation_parameters()
):
new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
if new_generation_config != model_to_save.generation_config:
logger.warning(
"Your generation config was originally created from the model config, but the model "
"config has changed since then. Unless you pass the `generation_config` argument to this "
"model's `generate` calls, they will revert to the legacy behavior where the base "
"`generate` parameterization is loaded from the model config instead. "
"To avoid this behavior and this warning, we recommend you to overwrite the generation "
"config model attribute before calling the model's `save_pretrained`, preferably also "
"removing any generation kwargs from the model config. This warning will be raised to an "
"exception in v4.41."
)
model_to_save.generation_config.save_pretrained(save_directory)
if _hf_peft_config_loaded:
logger.info(
"Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
)
state_dict = model_to_save.get_adapter_state_dict()
if save_peft_format:
logger.info(
"To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
)
peft_state_dict = {}
for key, value in state_dict.items():
peft_state_dict[f"base_model.model.{key}"] = value
state_dict = peft_state_dict
active_adapter = self.active_adapters()
if len(active_adapter) > 1:
raise ValueError(
"Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
"by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
)
active_adapter = active_adapter[0]
current_peft_config = self.peft_config[active_adapter]
current_peft_config.save_pretrained(save_directory)
# Save the model
if state_dict is None:
state_dict = model_to_save.state_dict()
# Translate state_dict from smp to hf if saving with smp >= 1.10
if IS_SAGEMAKER_MP_POST_1_10:
for smp_to_hf, _ in smp.state.module_manager.translate_functions:
state_dict = smp_to_hf(state_dict)
# Handle the case where some state_dict keys shouldn't be saved
if self._keys_to_ignore_on_save is not None:
for ignore_key in self._keys_to_ignore_on_save:
if ignore_key in state_dict.keys():
del state_dict[ignore_key]
if safe_serialization:
# Safetensors does not allow tensor aliasing.
# We're going to remove aliases before saving
ptrs = collections.defaultdict(list)
for name, tensor in state_dict.items():
# Sometimes in the state_dict we have non-tensor objects.
# e.g. in bitsandbytes we have some `str` objects in the state_dict
if isinstance(tensor, torch.Tensor):
ptrs[id_tensor_storage(tensor)].append(name)
else:
# In the non-tensor case, fall back to the pointer of the object itself
ptrs[id(tensor)].append(name)
# These are all the pointers of shared tensors.
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
error_names = []
to_delete_names = set()
# Recursively descend to find tied weight keys
_tied_weights_keys = _get_tied_weight_keys(self)
for names in shared_ptrs.values():
# Removing the keys which are declared as known duplicates on
# load. This allows to make sure the name which is kept is consistent.
if _tied_weights_keys is not None:
found = 0
for name in sorted(names):
matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys)
if matches_pattern and name in state_dict:
found += 1
if found < len(names):
to_delete_names.add(name)
# We are entering a place where the weights and the transformers configuration do NOT match.
shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
# Those are actually tensor sharing but disjoint from each other, we can safely clone them
# Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
for name in disjoint_names:
state_dict[name] = state_dict[name].clone()
# When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
# If the link between tensors was done at runtime then `from_pretrained` will not get
# the key back leading to random tensor. A proper warning will be shown
# during reload (if applicable), but since the file is not necessarily compatible with
# the config, better show a proper warning.
shared_names, identical_names = _find_identical(shared_names, state_dict)
# delete tensors that have identical storage
for inames in identical_names:
known = inames.intersection(to_delete_names)
for name in known:
del state_dict[name]
unknown = inames.difference(to_delete_names)
if len(unknown) > 1:
error_names.append(unknown)
if shared_names:
error_names.append(set(shared_names))
if len(error_names) > 0:
raise RuntimeError(
f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.",
)
# Shard the model if it is too big.
if not _hf_peft_config_loaded:
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
weights_name = _add_variant(weights_name, variant)
else:
weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
# in distributed settings to avoid race conditions.
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
# make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shards.keys()
and is_main_process
and reg.fullmatch(filename_no_suffix) is not None
):
os.remove(full_filename)
# Save the model
for shard_file, shard in shards.items():
if safe_serialization:
# At some point we will need to deal better with save_function (used for TPU and other distributed
# joyfulness), but for now this enough.
safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
else:
save_function(shard, os.path.join(save_directory, shard_file))
if index is None:
path_to_weights = os.path.join(save_directory, weights_name)
logger.info(f"Model weights saved in {path_to_weights}")
else:
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
if push_to_hub:
# Eventually create an empty model card
model_card = create_and_tag_model_card(
repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
)
# Update model card if needed:
model_card.save(os.path.join(save_directory, "README.md"))
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
)
@wraps(PushToHubMixin.push_to_hub)
def push_to_hub(self, *args, **kwargs):
tags = self.model_tags if self.model_tags is not None else []
tags_kwargs = kwargs.get("tags", [])
if isinstance(tags_kwargs, str):
tags_kwargs = [tags_kwargs]
for tag in tags_kwargs:
if tag not in tags:
tags.append(tag)
if tags:
kwargs["tags"] = tags
return super().push_to_hub(*args, **kwargs)
def get_memory_footprint(self, return_buffers=True):
r"""
Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
Arguments:
return_buffers (`bool`, *optional*, defaults to `True`):
Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
"""
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
if return_buffers:
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
mem = mem + mem_bufs
return mem
@wraps(torch.nn.Module.cuda)
def cuda(self, *args, **kwargs):
# Checks if the model has been loaded in 8-bit
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
raise ValueError(
"Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
" model has already been set to the correct devices and casted to the correct `dtype`."
)
else:
return super().cuda(*args, **kwargs)
@wraps(torch.nn.Module.to)
def to(self, *args, **kwargs):
# Checks if the model has been loaded in 8-bit
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
raise ValueError(
"`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
" model has already been set to the correct devices and casted to the correct `dtype`."
)
elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
# For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
# the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
dtype_present_in_args = False
if "dtype" not in kwargs:
for arg in args:
if isinstance(arg, torch.dtype):
dtype_present_in_args = True
break
else:
dtype_present_in_args = True
if dtype_present_in_args:
raise ValueError(
"You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
" `dtype` by passing the correct `torch_dtype` argument."
)
return super().to(*args, **kwargs)
def half(self, *args):
# Checks if the model is quantized
if getattr(self, "is_quantized", False):
raise ValueError(
"`.half()` is not supported for quantized model. Please use the model as it is, since the"
" model has already been casted to the correct `dtype`."
)
else:
return super().half(*args)
def float(self, *args):
# Checks if the model is quantized
if getattr(self, "is_quantized", False):
raise ValueError(
"`.float()` is not supported for quantized model. Please use the model as it is, since the"
" model has already been casted to the correct `dtype`."
)
else:
return super().float(*args)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
r"""
Instantiate a pretrained pytorch model from a pre-trained model configuration.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you should first set it back in training mode with `model.train()`.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
`./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
`True`.
- `None` if you are both providing the configuration and state dictionary (resp. with keyword
arguments `config` and `state_dict`).
model_args (sequence of positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
Can be either:
- an instance of a class derived from [`PretrainedConfig`],
- a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
state_dict (`Dict[str, torch.Tensor]`, *optional*):
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own
weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
[`~PreTrainedModel.from_pretrained`] is not a simpler option.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_tf (`bool`, *optional*, defaults to `False`):
Load the model weights from a TensorFlow checkpoint save file (see docstring of
`pretrained_model_name_or_path` argument).
from_flax (`bool`, *optional*, defaults to `False`):
Load the model weights from a Flax checkpoint save file (see docstring of
`pretrained_model_name_or_path` argument).
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
checkpoint with 3 labels).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (i.e., do not try to download the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
_fast_init(`bool`, *optional*, defaults to `True`):
Whether or not to disable fast initialization.
<Tip warning={true}>
One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
[pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
</Tip>
attn_implementation (`str`, *optional*):
The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
> Parameters for big model inference
low_cpu_mem_usage(`bool`, *optional*):
Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
This is an experimental feature and a subject to change at any moment.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
are:
1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
`dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
- the model will get loaded in `torch.float` (fp32).
2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.
<Tip>
For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
reach out to the authors and ask them to add this information to the model's card and to insert the
`torch_dtype` entry in `config.json` on the hub.
</Tip>
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
like `1`) on which the model will be allocated, the device map will map the entire model to this
device. Passing `device_map = 0` means put the whole model on GPU 0.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_state_dict (`bool`, *optional*):
If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
`True` when there is some disk offload.
offload_buffers (`bool`, *optional*):
Whether or not to offload the buffers with the model parameters.
quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
`load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
quantizations and not preferred. consider inserting all such arguments into quantization_config
instead.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
variant (`str`, *optional*):
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
ignored when using `from_tf` or `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
is not installed, it will be set to `False`.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
<Tip>
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
use this method in a firewalled environment.
</Tip>
Examples:
```python
>>> from transformers import BertConfig, BertModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = BertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading.
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
>>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
>>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)
```
* `low_cpu_mem_usage` algorithm:
This is an experimental function that loads the model using ~1x model size CPU memory
Here is how it works:
1. save which state_dict keys we have
2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
3. after the model has been instantiated switch to the meta device all params/buffers that
are going to be replaced from the loaded state_dict
4. load state_dict 2nd time
5. replace the params/buffers from the state_dict
Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors
"""
state_dict = kwargs.pop("state_dict", None)
from_tf = kwargs.pop("from_tf", False)
from_flax = kwargs.pop("from_flax", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
use_auth_token = kwargs.pop("use_auth_token", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
_ = kwargs.pop("mirror", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
_fast_init = kwargs.pop("_fast_init", True)
torch_dtype = kwargs.pop("torch_dtype", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
device_map = kwargs.pop("device_map", None)
max_memory = kwargs.pop("max_memory", None)
offload_folder = kwargs.pop("offload_folder", None)
offload_state_dict = kwargs.pop("offload_state_dict", False)
offload_buffers = kwargs.pop("offload_buffers", False)
load_in_8bit = kwargs.pop("load_in_8bit", False)
load_in_4bit = kwargs.pop("load_in_4bit", False)
quantization_config = kwargs.pop("quantization_config", None)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
variant = kwargs.pop("variant", None)
adapter_kwargs = kwargs.pop("adapter_kwargs", {})
adapter_name = kwargs.pop("adapter_name", "default")
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
if is_fsdp_enabled():
low_cpu_mem_usage = True
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
adapter_kwargs["token"] = token
if use_safetensors is None and not is_safetensors_available():
use_safetensors = False
if trust_remote_code is True:
logger.warning(
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
" ignored."
)
if commit_hash is None:
if not isinstance(config, PretrainedConfig):
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
resolved_config_file = cached_file(
pretrained_model_name_or_path,
CONFIG_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
else:
commit_hash = getattr(config, "_commit_hash", None)
if is_peft_available():
_adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)
if _adapter_model_path is None:
_adapter_model_path = find_adapter_config_file(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
_commit_hash=commit_hash,
**adapter_kwargs,
)
if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
with open(_adapter_model_path, "r", encoding="utf-8") as f:
_adapter_model_path = pretrained_model_name_or_path
pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
else:
_adapter_model_path = None
# change device_map into a map if we passed an int, a str or a torch.device
if isinstance(device_map, torch.device):
device_map = {"": device_map}
elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
try:
device_map = {"": torch.device(device_map)}
except RuntimeError:
raise ValueError(
"When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
)
elif isinstance(device_map, int):
if device_map < 0:
raise ValueError(
"You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
)
else:
device_map = {"": device_map}
if device_map is not None:
if low_cpu_mem_usage is None:
low_cpu_mem_usage = True
elif not low_cpu_mem_usage:
raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")
if low_cpu_mem_usage:
if is_deepspeed_zero3_enabled():
raise ValueError(
"DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
)
elif not is_accelerate_available():
raise ImportError(
"Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
)
# handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
if load_in_4bit or load_in_8bit:
if quantization_config is not None:
raise ValueError(
"You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
"`quantization_config` argument at the same time."
)
# preparing BitsAndBytesConfig from kwargs
config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
quantization_config, kwargs = BitsAndBytesConfig.from_dict(
config_dict=config_dict, return_unused_kwargs=True, **kwargs
)
logger.warning(
"The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
"Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
)
from_pt = not (from_tf | from_flax)
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
else:
# In case one passes a config to `from_pretrained` + "attn_implementation"
# override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
# Please see: https://github.com/huggingface/transformers/issues/28038
# Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
# we pop attn_implementation from the kwargs but this handles the case where users
# passes manually the config to `from_pretrained`.
config = copy.deepcopy(config)
kwarg_attn_imp = kwargs.pop("attn_implementation", None)
if kwarg_attn_imp is not None:
config._attn_implementation = kwarg_attn_imp
model_kwargs = kwargs
pre_quantized = getattr(config, "quantization_config", None) is not None
if pre_quantized or quantization_config is not None:
if pre_quantized:
config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
config.quantization_config, quantization_config
)
else:
config.quantization_config = quantization_config
hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
else:
hf_quantizer = None
if hf_quantizer is not None:
hf_quantizer.validate_environment(
torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
)
torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
device_map = hf_quantizer.update_device_map(device_map)
# Force-set to `True` for more mem efficiency
if low_cpu_mem_usage is None:
low_cpu_mem_usage = True
logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
is_quantized = hf_quantizer is not None
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
# index of the files.
is_sharded = False
sharded_metadata = None
# Load model
loading_info = None
# Keep in fp32 modules
keep_in_fp32_modules = None
use_keep_in_fp32_modules = False
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if is_local:
if from_tf and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
):
# Load from a TF 1.0 checkpoint in priority if from_tf
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
elif from_tf and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
):
# Load from a TF 2.0 checkpoint in priority if from_tf
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
elif from_flax and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
):
# Load from a Flax checkpoint in priority if from_flax
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
elif use_safetensors is not False and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
):
# Load from a safetensors checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
)
elif use_safetensors is not False and os.path.isfile(
os.path.join(
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
)
):
# Load from a sharded safetensors checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
)
is_sharded = True
elif os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
):
# Load from a PyTorch checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
)
elif os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
):
# Load from a sharded PyTorch checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
)
is_sharded = True
# At this stage we don't have a weight file so we will raise an error.
elif os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
raise EnvironmentError(
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
" `from_tf=True` to load this model from those weights."
)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
raise EnvironmentError(
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
" to load this model from those weights."
)
elif use_safetensors:
raise EnvironmentError(
f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
f" {pretrained_model_name_or_path}."
)
else:
raise EnvironmentError(
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
f" {pretrained_model_name_or_path}."
)
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
archive_file = pretrained_model_name_or_path
is_local = True
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
if not from_tf:
raise ValueError(
f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
"from_tf to True to load from this checkpoint."
)
archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
filename = pretrained_model_name_or_path
resolved_archive_file = download_url(pretrained_model_name_or_path)
else:
# set correct filename
if from_tf:
filename = TF2_WEIGHTS_NAME
elif from_flax:
filename = FLAX_WEIGHTS_NAME
elif use_safetensors is not False:
filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
else:
filename = _add_variant(WEIGHTS_NAME, variant)
try:
# Load from URL or cache if already cached
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"token": token,
"user_agent": user_agent,
"revision": revision,
"subfolder": subfolder,
"_raise_exceptions_for_gated_repo": False,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
}
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
# result when internet is up, the repo and revision exist, but the file does not.
if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path,
_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
**cached_file_kwargs,
)
if resolved_archive_file is not None:
is_sharded = True
elif use_safetensors:
if revision == "main":
resolved_archive_file, revision, is_sharded = auto_conversion(
pretrained_model_name_or_path, **cached_file_kwargs
)
cached_file_kwargs["revision"] = revision
if resolved_archive_file is None:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
"and thus cannot be loaded with `safetensors`. Please make sure that the model has "
"been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
)
else:
# This repo has no safetensors file of any kind, we switch to PyTorch.
filename = _add_variant(WEIGHTS_NAME, variant)
resolved_archive_file = cached_file(
pretrained_model_name_or_path, filename, **cached_file_kwargs
)
if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path,
_add_variant(WEIGHTS_INDEX_NAME, variant),
**cached_file_kwargs,
)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is not None:
if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]:
# If the PyTorch file was found, check if there is a safetensors file on the repository
# If there is no safetensors file on the repositories, start an auto conversion
safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME
has_file_kwargs = {
"revision": revision,
"proxies": proxies,
"token": token,
}
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"local_files_only": local_files_only,
"user_agent": user_agent,
"subfolder": subfolder,
"_raise_exceptions_for_gated_repo": False,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
**has_file_kwargs,
}
if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
Thread(
target=auto_conversion,
args=(pretrained_model_name_or_path,),
kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs},
name="Thread-autoconversion",
).start()
else:
# Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file.
# We try those to give a helpful error message.
has_file_kwargs = {
"revision": revision,
"proxies": proxies,
"token": token,
}
if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
" Use `from_tf=True` to load this model from those weights."
)
elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
" `from_flax=True` to load this model from those weights."
)
elif variant is not None and has_file(
pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
):
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
f" {variant}. Use `variant=None` to load this model from those weights."
)
else:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
f" {FLAX_WEIGHTS_NAME}."
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception as e:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
) from e
if is_local:
logger.info(f"loading weights file {archive_file}")
resolved_archive_file = archive_file
else:
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
else:
resolved_archive_file = None
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
if is_sharded:
# rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
pretrained_model_name_or_path,
resolved_archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
subfolder=subfolder,
_commit_hash=commit_hash,
)
if (
is_safetensors_available()
and isinstance(resolved_archive_file, str)
and resolved_archive_file.endswith(".safetensors")
):
with safe_open(resolved_archive_file, framework="pt") as f:
metadata = f.metadata()
if metadata.get("format") == "pt":
pass
elif metadata.get("format") == "tf":
from_tf = True
logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
elif metadata.get("format") == "flax":
from_flax = True
logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
elif metadata.get("format") == "mlx":
# This is a mlx file, we assume weights are compatible with pt
pass
else:
raise ValueError(
f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}"
)
from_pt = not (from_tf | from_flax)
# load pt weights early so that we know which dtype to init the model under
if from_pt:
if not is_sharded and state_dict is None:
# Time to load the checkpoint
state_dict = load_state_dict(resolved_archive_file)
# set dtype to instantiate the model under:
# 1. If torch_dtype is not None, we use that dtype
# 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
# weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
# we also may have config.torch_dtype available, but we won't rely on it till v5
dtype_orig = None
if torch_dtype is not None:
if isinstance(torch_dtype, str):
if torch_dtype == "auto":
if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
torch_dtype = config.torch_dtype
logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
else:
if is_sharded and "dtype" in sharded_metadata:
torch_dtype = sharded_metadata["dtype"]
elif not is_sharded:
torch_dtype = get_state_dict_dtype(state_dict)
else:
one_state_dict = load_state_dict(resolved_archive_file[0])
torch_dtype = get_state_dict_dtype(one_state_dict)
del one_state_dict # free CPU memory
logger.info(
"Since the `torch_dtype` attribute can't be found in model's config object, "
"will use torch_dtype={torch_dtype} as derived from model's weights"
)
else:
raise ValueError(
f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
)
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
# Check if `_keep_in_fp32_modules` is not None
use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
(torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
)
if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
else:
loaded_state_dict_keys = list(state_dict.keys())
if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
# In case some weights need to be kept in float32 and accelerate is not installed,
# we later on want to take the path where state_dict is not None, that is the one
# that do not require accelerate.
state_dict = None
config.name_or_path = pretrained_model_name_or_path
# Instantiate model.
init_contexts = [no_init_weights(_enable=_fast_init)]
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
elif low_cpu_mem_usage:
init_contexts.append(init_empty_weights())
config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained.
config = cls._autoset_attn_implementation(
config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
)
with ContextManagers(init_contexts):
# Let's make sure we don't run the init function of buffer modules
model = cls(config, *model_args, **model_kwargs)
# make sure we use the model's config since the __init__ call might have copied it
config = model.config
# Check first if we are `from_pt`
if use_keep_in_fp32_modules:
if is_accelerate_available() and not is_deepspeed_zero3_enabled():
low_cpu_mem_usage = True
keep_in_fp32_modules = model._keep_in_fp32_modules
else:
keep_in_fp32_modules = []
if hf_quantizer is not None:
hf_quantizer.preprocess_model(
model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
)
# We store the original dtype for quantized models as we cannot easily retrieve it
# once the weights have been quantized
# Note that once you have loaded a quantized model, you can't change its dtype so this will
# remain a single source of truth
config._pre_quantization_dtype = torch_dtype
if isinstance(device_map, str):
special_dtypes = {}
if hf_quantizer is not None:
special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
special_dtypes.update(
{
name: torch.float32
for name, _ in model.named_parameters()
if any(m in name for m in keep_in_fp32_modules)
}
)
target_dtype = torch_dtype
if hf_quantizer is not None:
target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
no_split_modules = model._get_no_split_modules(device_map)
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
device_map_kwargs = {"no_split_module_classes": no_split_modules}
if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
device_map_kwargs["special_dtypes"] = special_dtypes
elif len(special_dtypes) > 0:
logger.warning(
"This model has some weights that should be kept in higher precision, you need to upgrade "
"`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
)
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
dtype=target_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=max_memory,
**device_map_kwargs,
)
else:
max_memory = get_max_memory(max_memory)
if hf_quantizer is not None:
max_memory = hf_quantizer.adjust_max_memory(max_memory)
device_map_kwargs["max_memory"] = max_memory
# Make sure tied weights are tied before creating the device map.
model.tie_weights()
device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
if hf_quantizer is not None:
hf_quantizer.validate_environment(device_map=device_map)
elif device_map is not None:
model.tie_weights()
tied_params = find_tied_parameters(model)
# check if we don't have tied param in different devices
check_tied_parameters_on_same_device(tied_params, device_map)
if from_tf:
if resolved_archive_file.endswith(".index"):
# Load from a TensorFlow 1.X checkpoint - provided by original authors
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
else:
# Load from our TensorFlow 2.0 checkpoints
try:
from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
model, loading_info = load_tf2_checkpoint_in_pytorch_model(
model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
)
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
" Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
" instructions."
)
raise
elif from_flax:
try:
from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model
model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
except ImportError:
logger.error(
"Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
" installation instructions."
)
raise
elif from_pt:
# restore default dtype
if dtype_orig is not None:
torch.set_default_dtype(dtype_orig)
(
model,
missing_keys,
unexpected_keys,
mismatched_keys,
offload_index,
error_msgs,
) = cls._load_pretrained_model(
model,
state_dict,
loaded_state_dict_keys, # XXX: rename?
resolved_archive_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
sharded_metadata=sharded_metadata,
_fast_init=_fast_init,
low_cpu_mem_usage=low_cpu_mem_usage,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
hf_quantizer=hf_quantizer,
keep_in_fp32_modules=keep_in_fp32_modules,
)
# make sure token embedding weights are still tied if needed
model.tie_weights()
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate() and pretrained_model_name_or_path is not None:
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
except OSError:
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
# Dispatch model with hooks on all devices if necessary
if device_map is not None:
device_map_kwargs = {
"device_map": device_map,
"offload_dir": offload_folder,
"offload_index": offload_index,
"offload_buffers": offload_buffers,
}
if "skip_keys" in inspect.signature(dispatch_model).parameters:
device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
dispatch_model(model, **device_map_kwargs)
if hf_quantizer is not None:
hf_quantizer.postprocess_model(model)
model.hf_quantizer = hf_quantizer
if _adapter_model_path is not None:
model.load_adapter(
_adapter_model_path,
adapter_name=adapter_name,
token=token,
adapter_kwargs=adapter_kwargs,
)
if output_loading_info:
if loading_info is None:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
return model, loading_info
return model
@classmethod
def _load_pretrained_model(
cls,
model,
state_dict,
loaded_keys,
resolved_archive_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=False,
sharded_metadata=None,
_fast_init=True,
low_cpu_mem_usage=False,
device_map=None,
offload_folder=None,
offload_state_dict=None,
dtype=None,
hf_quantizer=None,
keep_in_fp32_modules=None,
):
is_safetensors = False
is_quantized = hf_quantizer is not None
if device_map is not None and "disk" in device_map.values():
archive_file = (
resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
)
is_safetensors = archive_file.endswith(".safetensors")
if offload_folder is None and not is_safetensors:
raise ValueError(
"The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
" for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
" offers the weights in this format."
)
if offload_folder is not None:
os.makedirs(offload_folder, exist_ok=True)
if offload_state_dict is None:
offload_state_dict = True
is_sharded_safetensors = is_safetensors and sharded_metadata is not None
# tie the model weights before retrieving the state_dict
model.tie_weights()
# Retrieve missing & unexpected_keys
model_state_dict = model.state_dict()
expected_keys = list(model_state_dict.keys())
prefix = model.base_model_prefix
def _fix_key(key):
if "beta" in key:
return key.replace("beta", "bias")
if "gamma" in key:
return key.replace("gamma", "weight")
return key
original_loaded_keys = loaded_keys
loaded_keys = [_fix_key(key) for key in loaded_keys]
if len(prefix) > 0:
has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
else:
has_prefix_module = False
expects_prefix_module = False
# key re-naming operations are never done on the keys
# that are loaded, but always on the keys of the newly initialized model
remove_prefix_from_model = not has_prefix_module and expects_prefix_module
add_prefix_to_model = has_prefix_module and not expects_prefix_module
if remove_prefix_from_model:
_prefix = f"{prefix}."
expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
elif add_prefix_to_model:
expected_keys = [".".join([prefix, s]) for s in expected_keys]
missing_keys = sorted(set(expected_keys) - set(loaded_keys))
unexpected_keys = set(loaded_keys) - set(expected_keys)
# Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
# buffers
model_buffers = {n for n, _ in model.named_buffers()}
if remove_prefix_from_model:
model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
elif add_prefix_to_model:
model_buffers = {".".join([prefix, key]) for key in model_buffers}
unexpected_keys = sorted(unexpected_keys - model_buffers)
model.tie_weights()
if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
ptrs = collections.defaultdict(list)
for name, tensor in model.state_dict().items():
id_tensor = id_tensor_storage(tensor)
ptrs[id_tensor].append(name)
# These are all the pointers of shared tensors.
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
else:
# id function doesn't work for meta tensor so we need this function
tied_params = find_tied_parameters(model)
for group in tied_params:
if remove_prefix_from_model:
group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
elif add_prefix_to_model:
group = [".".join([prefix, key]) for key in group]
missing_in_group = [k for k in missing_keys if k in group]
if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
missing_keys = [k for k in missing_keys if k not in missing_in_group]
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls._keys_to_ignore_on_load_missing is not None:
for pat in cls._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if hf_quantizer is not None:
missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix)
# retrieve weights on meta device and put them back on CPU.
# This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
if low_cpu_mem_usage:
for key in missing_keys:
if key in list(model_state_dict.keys()):
key = key
elif f"{prefix}.{key}" in list(model_state_dict.keys()):
key = f"{prefix}.{key}"
elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
key = ".".join(key.split(".")[1:])
param = model_state_dict[key]
# upcast in fp32 if any
target_dtype = dtype
if (
keep_in_fp32_modules is not None
and dtype == torch.float16
and any(
module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
)
):
target_dtype = torch.float32
if param.device == torch.device("meta"):
value = torch.empty(*param.size(), dtype=target_dtype)
if (
not is_quantized
or getattr(hf_quantizer, "requires_parameters_quantization", False)
or not hf_quantizer.check_quantized_param(
model, param_value=value, param_name=key, state_dict={}
)
):
set_module_tensor_to_device(model, key, "cpu", value)
else:
hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
# retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
if _fast_init:
if not ignore_mismatched_sizes:
if remove_prefix_from_model:
_loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
elif add_prefix_to_model:
_loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
else:
_loaded_keys = loaded_keys
not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
# If we're about to tie the output embeds to the input embeds we don't need to init them
if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
output_embeddings = model.get_output_embeddings()
if output_embeddings is not None:
# Still need to initialize if there is a bias term since biases are not tied.
if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
output_embeddings._is_hf_initialized = True
else:
not_initialized_submodules = dict(model.named_modules())
# This will only initialize submodules that are not marked as initialized by the line above.
if is_deepspeed_zero3_enabled() and not is_quantized:
import deepspeed
not_initialized_parameters = list(
set(
itertools.chain.from_iterable(
submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
)
)
)
with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
model.apply(model._initialize_weights)
else:
model.apply(model._initialize_weights)
# Set some modules to fp32 if any
if keep_in_fp32_modules is not None:
for name, param in model.named_parameters():
if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
# param = param.to(torch.float32) does not work here as only in the local scope.
param.data = param.data.to(torch.float32)
# Make sure we are able to load base models as well as derived models (with heads)
start_prefix = ""
model_to_load = model
if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
start_prefix = cls.base_model_prefix + "."
if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
model_to_load = getattr(model, cls.base_model_prefix)
base_model_expected_keys = list(model_to_load.state_dict().keys())
if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
raise ValueError(
"The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
"properly saved?"
)
if device_map is not None:
device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
def _find_mismatched_keys(
state_dict,
model_state_dict,
loaded_keys,
add_prefix_to_model,
remove_prefix_from_model,
ignore_mismatched_sizes,
):
mismatched_keys = []
if ignore_mismatched_sizes:
for checkpoint_key in loaded_keys:
# If the checkpoint is sharded, we may not have the key here.
if checkpoint_key not in state_dict:
continue
model_key = checkpoint_key
if remove_prefix_from_model:
# The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
model_key = f"{prefix}.{checkpoint_key}"
elif add_prefix_to_model:
# The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
model_key = ".".join(checkpoint_key.split(".")[1:])
if (
model_key in model_state_dict
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
):
if (
state_dict[checkpoint_key].shape[-1] == 1
and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
):
# This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
# Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
pass
else:
mismatched_keys.append(
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
)
del state_dict[checkpoint_key]
return mismatched_keys
if resolved_archive_file is not None:
folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
else:
folder = None
if device_map is not None and is_safetensors:
param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
if sharded_metadata is None:
archive_file = (
resolved_archive_file[0]
if isinstance(resolved_archive_file, (list, tuple))
else resolved_archive_file
)
weight_map = {p: archive_file for p in original_loaded_keys}
else:
weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
offload_index = {
p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
for p, f in weight_map.items()
if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
}
if state_dict is not None:
# Whole checkpoint
mismatched_keys = _find_mismatched_keys(
state_dict,
model_state_dict,
original_loaded_keys,
add_prefix_to_model,
remove_prefix_from_model,
ignore_mismatched_sizes,
)
error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
offload_index = None
else:
# Sharded checkpoint or whole but low_cpu_mem_usage==True
# This should always be a list but, just to be sure.
if not isinstance(resolved_archive_file, list):
resolved_archive_file = [resolved_archive_file]
error_msgs = []
mismatched_keys = []
if not is_safetensors:
offload_index = {} if device_map is not None and "disk" in device_map.values() else None
if offload_state_dict:
state_dict_folder = tempfile.mkdtemp()
state_dict_index = {}
else:
state_dict_folder = None
state_dict_index = None
if is_sharded_safetensors:
disk_only_shard_files = get_disk_only_shard_files(
device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
)
disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
else:
disk_only_shard_files = []
if len(resolved_archive_file) > 1:
resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
for shard_file in resolved_archive_file:
# Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
if shard_file in disk_only_shard_files:
continue
state_dict = load_state_dict(shard_file, is_quantized=is_quantized)
# Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
# matching the weights in the model.
mismatched_keys += _find_mismatched_keys(
state_dict,
model_state_dict,
original_loaded_keys,
add_prefix_to_model,
remove_prefix_from_model,
ignore_mismatched_sizes,
)
if low_cpu_mem_usage:
if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
for key, param in model_to_load.state_dict().items():
if param.device == torch.device("meta"):
set_module_tensor_to_device(
model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
)
else:
new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
model_to_load,
state_dict,
loaded_keys,
start_prefix,
expected_keys,
device_map=device_map,
offload_folder=offload_folder,
offload_index=offload_index,
state_dict_folder=state_dict_folder,
state_dict_index=state_dict_index,
dtype=dtype,
hf_quantizer=hf_quantizer,
is_safetensors=is_safetensors,
keep_in_fp32_modules=keep_in_fp32_modules,
unexpected_keys=unexpected_keys,
)
error_msgs += new_error_msgs
else:
error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
# force memory release
del state_dict
gc.collect()
if offload_index is not None and len(offload_index) > 0:
if model != model_to_load:
# We need to add the prefix of the base model
prefix = cls.base_model_prefix
if not is_safetensors:
for weight_name in offload_index:
shutil.move(
os.path.join(offload_folder, f"{weight_name}.dat"),
os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
)
offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
if not is_safetensors:
save_offload_index(offload_index, offload_folder)
offload_index = None
if offload_state_dict:
# Load back temporarily offloaded state dict
load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
shutil.rmtree(state_dict_folder)
if len(error_msgs) > 0:
error_msg = "\n\t".join(error_msgs)
if "size mismatch" in error_msg:
error_msg += (
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
)
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
if len(unexpected_keys) > 0:
archs = [] if model.config.architectures is None else model.config.architectures
warner = logger.warning if model.__class__.__name__ in archs else logger.info
warner(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
elif len(mismatched_keys) == 0:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
" to use it for predictions and inference."
)
return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
module_keys = {".".join(key.split(".")[:-1]) for key in names}
# torch.nn.ParameterList is a special case where two parameter keywords
# are appended to the module name, *e.g.* bert.special_embeddings.0
module_keys = module_keys.union(
{".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
)
retrieved_modules = []
# retrieve all modules that has at least one missing weight name
for name, module in self.named_modules():
if remove_prefix:
_prefix = f"{self.base_model_prefix}."
name = name[len(_prefix) :] if name.startswith(_prefix) else name
elif add_prefix:
name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
if name in module_keys:
retrieved_modules.append(module)
return retrieved_modules
@staticmethod
def _load_pretrained_model_low_mem(
model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
):
"""
This is an experimental function that loads the model using ~1.x model size CPU memory
Before you call it do:
1. save which state_dict keys are available
2. drop state_dict before model is created, since the latter takes 1x model size memory
Here then we continue:
3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
4. load state_dict 2nd time
5. replace the params/buffers from the state_dict
Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
handle bitsandbytes, needs non-empty hf_quantizer argument.
"""
_move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
state_dict = load_state_dict(resolved_archive_file)
expected_keys = loaded_state_dict_keys # plug for missing expected_keys. TODO: replace with proper keys
error_msgs = _load_state_dict_into_meta_model(
model,
state_dict,
loaded_state_dict_keys,
start_prefix,
expected_keys=expected_keys,
hf_quantizer=hf_quantizer,
)
return error_msgs
@classmethod
def register_for_auto_class(cls, auto_class="AutoModel"):
"""
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
The auto class to register this new model with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
def to_bettertransformer(self) -> "PreTrainedModel":
"""
Converts the model to use [PyTorch's native attention
implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
subset of all Transformers models are supported.
PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).
Returns:
[`PreTrainedModel`]: The model converted to BetterTransformer.
"""
if not is_optimum_available():
raise ImportError("The package `optimum` is required to use Better Transformer.")
from optimum.version import __version__ as optimum_version
if version.parse(optimum_version) < version.parse("1.7.0"):
raise ImportError(
f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
)
from optimum.bettertransformer import BetterTransformer
return BetterTransformer.transform(self)
def reverse_bettertransformer(self):
"""
Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
used, for example in order to save the model.
Returns:
[`PreTrainedModel`]: The model converted back to the original modeling.
"""
if not is_optimum_available():
raise ImportError("The package `optimum` is required to use Better Transformer.")
from optimum.version import __version__ as optimum_version
if version.parse(optimum_version) < version.parse("1.7.0"):
raise ImportError(
f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
)
from optimum.bettertransformer import BetterTransformer
return BetterTransformer.reverse(self)
def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
"""
Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
"""
# Skip the check during tracing.
if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
return
if (attention_mask is not None) or (self.config.pad_token_id is None):
return
# Check only the first and last input IDs to reduce overhead.
if self.config.pad_token_id in input_ids[:, [-1, 0]]:
warn_string = (
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
"https://huggingface.co/docs/transformers/troubleshooting"
"#incorrect-output-when-padding-tokens-arent-masked."
)
# If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
# attention_mask or not. In this case, we should still show a warning because this is a rare case.
if (
(self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
):
warn_string += (
f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
)
logger.warning_once(warn_string)
@property
def _is_quantized_training_enabled(self):
warnings.warn(
"`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
FutureWarning,
)
if not hasattr(self, "hf_quantizer"):
return False
return self.hf_quantizer.is_trainable
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
if PreTrainedModel.push_to_hub.__doc__ is not None:
PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
object="model", object_class="AutoModel", object_files="model file"
)
class PoolerStartLogits(nn.Module):
"""
Compute SQuAD start logits from sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model, will be used to grab the `hidden_size` of the model.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, 1)
def forward(
self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
Returns:
`torch.FloatTensor`: The start logits for SQuAD.
"""
x = self.dense(hidden_states).squeeze(-1)
if p_mask is not None:
if get_parameter_dtype(self) == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
class PoolerEndLogits(nn.Module):
"""
Compute SQuAD end logits from sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
to use.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dense_1 = nn.Linear(config.hidden_size, 1)
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The end logits for SQuAD.
"""
assert (
start_states is not None or start_positions is not None
), "One of start_states, start_positions should be not None"
if start_positions is not None:
slen, hsz = hidden_states.shape[-2:]
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
x = self.activation(x)
x = self.LayerNorm(x)
x = self.dense_1(x).squeeze(-1)
if p_mask is not None:
if get_parameter_dtype(self) == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
class PoolerAnswerClass(nn.Module):
"""
Compute SQuAD 2.0 answer class from classification and start tokens hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model, will be used to grab the `hidden_size` of the model.
"""
def __init__(self, config):
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
cls_index: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The SQuAD 2.0 answer class.
"""
# No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
hsz = hidden_states.shape[-1]
assert (
start_states is not None or start_positions is not None
), "One of start_states, start_positions should be not None"
if start_positions is not None:
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
if cls_index is not None:
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
else:
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
x = self.activation(x)
x = self.dense_1(x).squeeze(-1)
return x
@dataclass
class SquadHeadOutput(ModelOutput):
"""
Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
(beam-search).
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
class SQuADHead(nn.Module):
r"""
A SQuAD head inspired by XLNet.
Args:
config ([`PretrainedConfig`]):
The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
to use.
"""
def __init__(self, config):
super().__init__()
self.start_n_top = config.start_n_top
self.end_n_top = config.end_n_top
self.start_logits = PoolerStartLogits(config)
self.end_logits = PoolerEndLogits(config)
self.answer_class = PoolerAnswerClass(config)
@replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
def forward(
self,
hidden_states: torch.FloatTensor,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
cls_index: Optional[torch.LongTensor] = None,
is_impossible: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
return_dict: bool = False,
) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Final hidden states of the model on the sequence tokens.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Positions of the first token for the labeled span.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Positions of the last token for the labeled span.
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Whether the question has a possible answer in the paragraph or not.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
return_dict (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
"""
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, let's remove the dimension added by batch splitting
for x in (start_positions, end_positions, cls_index, is_impossible):
if x is not None and x.dim() > 1:
x.squeeze_(-1)
# during training, compute the end logits based on the ground truth of the start position
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
loss_fct = CrossEntropyLoss()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if cls_index is not None and is_impossible is not None:
# Predict answerability from the representation of CLS and START
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
loss_fct_cls = nn.BCEWithLogitsLoss()
cls_loss = loss_fct_cls(cls_logits, is_impossible)
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
total_loss += cls_loss * 0.5
return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
else:
# during inference, compute the end logits based on beam search
bsz, slen, hsz = hidden_states.size()
start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
start_top_log_probs, start_top_index = torch.topk(
start_log_probs, self.start_n_top, dim=-1
) # shape (bsz, start_n_top)
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
start_states
) # shape (bsz, slen, start_n_top, hsz)
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
end_top_log_probs, end_top_index = torch.topk(
end_log_probs, self.end_n_top, dim=1
) # shape (bsz, end_n_top, start_n_top)
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)
if not return_dict:
return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
else:
return SquadHeadOutput(
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits,
)
class SequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
- `"last"` -- Take the last token hidden state (like XLNet)
- `"first"` -- Take the first token hidden state (like Bert)
- `"mean"` -- Take the mean of all tokens hidden states
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
- `"attn"` -- Not implemented now, use multi-head attention
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.summary_type = getattr(config, "summary_type", "last")
if self.summary_type == "attn":
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise NotImplementedError
self.summary = Identity()
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
num_classes = config.num_labels
else:
num_classes = config.hidden_size
self.summary = nn.Linear(config.hidden_size, num_classes)
activation_string = getattr(config, "summary_activation", None)
self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
self.first_dropout = Identity()
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(config.summary_first_dropout)
self.last_dropout = Identity()
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(config.summary_last_dropout)
def forward(
self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
) -> torch.FloatTensor:
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`torch.FloatTensor`: The summary of the sequence hidden states.
"""
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = hidden_states.mean(dim=1)
elif self.summary_type == "cls_index":
if cls_index is None:
cls_index = torch.full_like(
hidden_states[..., :1, :],
hidden_states.shape[-2] - 1,
dtype=torch.long,
)
else:
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
output = self.first_dropout(output)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output)
return output
def unwrap_model(model: nn.Module, recursive: bool = False) -> nn.Module:
"""
Recursively unwraps a model from potential containers (as used in distributed training).
Args:
model (`torch.nn.Module`): The model to unwrap.
recursive (`bool`, *optional*, defaults to `False`):
Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers
recursively, not just the top-level distributed containers.
"""
# Use accelerate implementation if available (should always be the case when using torch)
# This is for pytorch, as we also have to handle things like dynamo
if is_accelerate_available():
kwargs = {}
if recursive:
if not is_accelerate_available("0.29.0"):
raise RuntimeError(
"Setting `recursive=True` to `unwrap_model` requires `accelerate` v0.29.0. Please upgrade your version of accelerate"
)
else:
kwargs["recursive"] = recursive
return extract_model_from_parallel(model, **kwargs)
else:
# since there could be multiple levels of wrapping, unwrap recursively
if hasattr(model, "module"):
return unwrap_model(model.module)
else:
return model
def expand_device_map(device_map, param_names, start_prefix):
"""
Expand a device map to return the correspondance parameter name to device.
"""
new_device_map = {}
param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
for module, device in device_map.items():
new_device_map.update(
{p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
)
return new_device_map
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
"""
Returns the list of shard files containing only weights offloaded to disk.
"""
weight_map = {
p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
}
files_content = collections.defaultdict(list)
for weight_name, filename in weight_map.items():
while len(weight_name) > 0 and weight_name not in device_map:
weight_name = ".".join(weight_name.split(".")[:-1])
files_content[filename].append(device_map[weight_name])
return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]
|