File size: 40,737 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Doc utilities: Utilities related to documentation
"""

import functools
import re
import types


def add_start_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        return fn

    return docstring_decorator


def add_start_docstrings_to_model_forward(*docstr):
    def docstring_decorator(fn):
        docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
        class_name = f"[`{fn.__qualname__.split('.')[0]}`]"
        intro = f"   The {class_name} forward method, overrides the `__call__` special method."
        note = r"""

    <Tip>

    Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`]
    instance afterwards instead of this since the former takes care of running the pre and post processing steps while
    the latter silently ignores them.

    </Tip>
"""

        fn.__doc__ = intro + note + docstring
        return fn

    return docstring_decorator


def add_end_docstrings(*docstr):
    def docstring_decorator(fn):
        fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr)
        return fn

    return docstring_decorator


PT_RETURN_INTRODUCTION = r"""
    Returns:
        [`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of
        `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various
        elements depending on the configuration ([`{config_class}`]) and inputs.

"""


TF_RETURN_INTRODUCTION = r"""
    Returns:
        [`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if
        `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the
        configuration ([`{config_class}`]) and inputs.

"""


def _get_indent(t):
    """Returns the indentation in the first line of t"""
    search = re.search(r"^(\s*)\S", t)
    return "" if search is None else search.groups()[0]


def _convert_output_args_doc(output_args_doc):
    """Convert output_args_doc to display properly."""
    # Split output_arg_doc in blocks argument/description
    indent = _get_indent(output_args_doc)
    blocks = []
    current_block = ""
    for line in output_args_doc.split("\n"):
        # If the indent is the same as the beginning, the line is the name of new arg.
        if _get_indent(line) == indent:
            if len(current_block) > 0:
                blocks.append(current_block[:-1])
            current_block = f"{line}\n"
        else:
            # Otherwise it's part of the description of the current arg.
            # We need to remove 2 spaces to the indentation.
            current_block += f"{line[2:]}\n"
    blocks.append(current_block[:-1])

    # Format each block for proper rendering
    for i in range(len(blocks)):
        blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
        blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])

    return "\n".join(blocks)


def _prepare_output_docstrings(output_type, config_class, min_indent=None):
    """
    Prepares the return part of the docstring using `output_type`.
    """
    output_docstring = output_type.__doc__

    # Remove the head of the docstring to keep the list of args only
    lines = output_docstring.split("\n")
    i = 0
    while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
        i += 1
    if i < len(lines):
        params_docstring = "\n".join(lines[(i + 1) :])
        params_docstring = _convert_output_args_doc(params_docstring)
    else:
        raise ValueError(
            f"No `Args` or `Parameters` section is found in the docstring of `{output_type.__name__}`. Make sure it has "
            "docstring and contain either `Args` or `Parameters`."
        )

    # Add the return introduction
    full_output_type = f"{output_type.__module__}.{output_type.__name__}"
    intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
    intro = intro.format(full_output_type=full_output_type, config_class=config_class)
    result = intro + params_docstring

    # Apply minimum indent if necessary
    if min_indent is not None:
        lines = result.split("\n")
        # Find the indent of the first nonempty line
        i = 0
        while len(lines[i]) == 0:
            i += 1
        indent = len(_get_indent(lines[i]))
        # If too small, add indentation to all nonempty lines
        if indent < min_indent:
            to_add = " " * (min_indent - indent)
            lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines]
            result = "\n".join(lines)

    return result


FAKE_MODEL_DISCLAIMER = """
    <Tip warning={true}>

    This example uses a random model as the real ones are all very big. To get proper results, you should use
    {real_checkpoint} instead of {fake_checkpoint}. If you get out-of-memory when loading that checkpoint, you can try
    adding `device_map="auto"` in the `from_pretrained` call.

    </Tip>
"""


PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer(
    ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
    ... )

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_token_class_ids = logits.argmax(-1)

    >>> # Note that tokens are classified rather then input words which means that
    >>> # there might be more predicted token classes than words.
    >>> # Multiple token classes might account for the same word
    >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
    >>> predicted_tokens_classes
    {expected_output}

    >>> labels = predicted_token_class_ids
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
"""

PT_QUESTION_ANSWERING_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

    >>> inputs = tokenizer(question, text, return_tensors="pt")
    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> answer_start_index = outputs.start_logits.argmax()
    >>> answer_end_index = outputs.end_logits.argmax()

    >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
    >>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
    {expected_output}

    >>> # target is "nice puppet"
    >>> target_start_index = torch.tensor([{qa_target_start_index}])
    >>> target_end_index = torch.tensor([{qa_target_end_index}])

    >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
    >>> loss = outputs.loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
"""

PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example of single-label classification:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_id = logits.argmax().item()
    >>> model.config.id2label[predicted_class_id]
    {expected_output}

    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)

    >>> labels = torch.tensor([1])
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```

    Example of multi-label classification:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained(
    ...     "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification"
    ... )

    >>> labels = torch.sum(
    ...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
    ... ).to(torch.float)
    >>> loss = model(**inputs, labels=labels).loss
    ```
"""

PT_MASKED_LM_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> # retrieve index of {mask}
    >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

    >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
    >>> tokenizer.decode(predicted_token_id)
    {expected_output}

    >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
    >>> # mask labels of non-{mask} tokens
    >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

    >>> outputs = model(**inputs, labels=labels)
    >>> round(outputs.loss.item(), 2)
    {expected_loss}
    ```
"""

PT_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
"""

PT_MULTIPLE_CHOICE_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."
    >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
    >>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels)  # batch size is 1

    >>> # the linear classifier still needs to be trained
    >>> loss = outputs.loss
    >>> logits = outputs.logits
    ```
"""

PT_CAUSAL_LM_SAMPLE = r"""
    Example:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    >>> outputs = model(**inputs, labels=inputs["input_ids"])
    >>> loss = outputs.loss
    >>> logits = outputs.logits
    ```
"""

PT_SPEECH_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
"""

PT_SPEECH_CTC_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits
    >>> predicted_ids = torch.argmax(logits, dim=-1)

    >>> # transcribe speech
    >>> transcription = processor.batch_decode(predicted_ids)
    >>> transcription[0]
    {expected_output}

    >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids

    >>> # compute loss
    >>> loss = model(**inputs).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
"""

PT_SPEECH_SEQ_CLASS_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
    >>> predicted_label = model.config.id2label[predicted_class_ids]
    >>> predicted_label
    {expected_output}

    >>> # compute loss - target_label is e.g. "down"
    >>> target_label = model.config.id2label[0]
    >>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
    >>> loss = model(**inputs).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
"""


PT_SPEECH_FRAME_CLASS_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> probabilities = torch.sigmoid(logits[0])
    >>> # labels is a one-hot array of shape (num_frames, num_speakers)
    >>> labels = (probabilities > 0.5).long()
    >>> labels[0].tolist()
    {expected_output}
    ```
"""


PT_SPEECH_XVECTOR_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(
    ...     [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
    ... )
    >>> with torch.no_grad():
    ...     embeddings = model(**inputs).embeddings

    >>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()

    >>> # the resulting embeddings can be used for cosine similarity-based retrieval
    >>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
    >>> similarity = cosine_sim(embeddings[0], embeddings[1])
    >>> threshold = 0.7  # the optimal threshold is dataset-dependent
    >>> if similarity < threshold:
    ...     print("Speakers are not the same!")
    >>> round(similarity.item(), 2)
    {expected_output}
    ```
"""

PT_VISION_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="pt")

    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
"""

PT_VISION_SEQ_CLASS_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> # model predicts one of the 1000 ImageNet classes
    >>> predicted_label = logits.argmax(-1).item()
    >>> print(model.config.id2label[predicted_label])
    {expected_output}
    ```
"""


PT_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": PT_MASKED_LM_SAMPLE,
    "LMHead": PT_CAUSAL_LM_SAMPLE,
    "BaseModel": PT_BASE_MODEL_SAMPLE,
    "SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE,
    "CTC": PT_SPEECH_CTC_SAMPLE,
    "AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE,
    "AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE,
    "AudioXVector": PT_SPEECH_XVECTOR_SAMPLE,
    "VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE,
    "ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE,
}


TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer(
    ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
    ... )

    >>> logits = model(**inputs).logits
    >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

    >>> # Note that tokens are classified rather then input words which means that
    >>> # there might be more predicted token classes than words.
    >>> # Multiple token classes might account for the same word
    >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
    >>> predicted_tokens_classes
    {expected_output}
    ```

    ```python
    >>> labels = predicted_token_class_ids
    >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
    >>> round(float(loss), 2)
    {expected_loss}
    ```
"""

TF_QUESTION_ANSWERING_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

    >>> inputs = tokenizer(question, text, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
    >>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

    >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
    >>> tokenizer.decode(predict_answer_tokens)
    {expected_output}
    ```

    ```python
    >>> # target is "nice puppet"
    >>> target_start_index = tf.constant([{qa_target_start_index}])
    >>> target_end_index = tf.constant([{qa_target_end_index}])

    >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
    >>> loss = tf.math.reduce_mean(outputs.loss)
    >>> round(float(loss), 2)
    {expected_loss}
    ```
"""

TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

    >>> logits = model(**inputs).logits

    >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
    >>> model.config.id2label[predicted_class_id]
    {expected_output}
    ```

    ```python
    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)

    >>> labels = tf.constant(1)
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(float(loss), 2)
    {expected_loss}
    ```
"""

TF_MASKED_LM_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
    >>> logits = model(**inputs).logits

    >>> # retrieve index of {mask}
    >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
    >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

    >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
    >>> tokenizer.decode(predicted_token_id)
    {expected_output}
    ```

    ```python
    >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
    >>> # mask labels of non-{mask} tokens
    >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

    >>> outputs = model(**inputs, labels=labels)
    >>> round(float(outputs.loss), 2)
    {expected_loss}
    ```
"""

TF_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
    >>> outputs = model(inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
"""

TF_MULTIPLE_CHOICE_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
    >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
    >>> outputs = model(inputs)  # batch size is 1

    >>> # the linear classifier still needs to be trained
    >>> logits = outputs.logits
    ```
"""

TF_CAUSAL_LM_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
    >>> outputs = model(inputs)
    >>> logits = outputs.logits
    ```
"""

TF_SPEECH_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
"""

TF_SPEECH_CTC_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset
    >>> import tensorflow as tf

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
    >>> logits = model(**inputs).logits
    >>> predicted_ids = tf.math.argmax(logits, axis=-1)

    >>> # transcribe speech
    >>> transcription = processor.batch_decode(predicted_ids)
    >>> transcription[0]
    {expected_output}
    ```

    ```python
    >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids

    >>> # compute loss
    >>> loss = model(**inputs).loss
    >>> round(float(loss), 2)
    {expected_loss}
    ```
"""

TF_VISION_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
"""

TF_VISION_SEQ_CLASS_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import tensorflow as tf
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="tf")
    >>> logits = model(**inputs).logits

    >>> # model predicts one of the 1000 ImageNet classes
    >>> predicted_label = int(tf.math.argmax(logits, axis=-1))
    >>> print(model.config.id2label[predicted_label])
    {expected_output}
    ```
"""

TF_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": TF_MASKED_LM_SAMPLE,
    "LMHead": TF_CAUSAL_LM_SAMPLE,
    "BaseModel": TF_BASE_MODEL_SAMPLE,
    "SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE,
    "CTC": TF_SPEECH_CTC_SAMPLE,
    "VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE,
    "ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE,
}


FLAX_TOKEN_CLASSIFICATION_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> logits = outputs.logits
    ```
"""

FLAX_QUESTION_ANSWERING_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
    >>> inputs = tokenizer(question, text, return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> start_scores = outputs.start_logits
    >>> end_scores = outputs.end_logits
    ```
"""

FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> logits = outputs.logits
    ```
"""

FLAX_MASKED_LM_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> logits = outputs.logits
    ```
"""

FLAX_BASE_MODEL_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
"""

FLAX_MULTIPLE_CHOICE_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
    >>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}})

    >>> logits = outputs.logits
    ```
"""

FLAX_CAUSAL_LM_SAMPLE = r"""
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
    >>> outputs = model(**inputs)

    >>> # retrieve logts for next token
    >>> next_token_logits = outputs.logits[:, -1]
    ```
"""

FLAX_SAMPLE_DOCSTRINGS = {
    "SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE,
    "QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE,
    "TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE,
    "MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE,
    "MaskedLM": FLAX_MASKED_LM_SAMPLE,
    "BaseModel": FLAX_BASE_MODEL_SAMPLE,
    "LMHead": FLAX_CAUSAL_LM_SAMPLE,
}


def filter_outputs_from_example(docstring, **kwargs):
    """
    Removes the lines testing an output with the doctest syntax in a code sample when it's set to `None`.
    """
    for key, value in kwargs.items():
        if value is not None:
            continue

        doc_key = "{" + key + "}"
        docstring = re.sub(rf"\n([^\n]+)\n\s+{doc_key}\n", "\n", docstring)

    return docstring


def add_code_sample_docstrings(
    *docstr,
    processor_class=None,
    checkpoint=None,
    output_type=None,
    config_class=None,
    mask="[MASK]",
    qa_target_start_index=14,
    qa_target_end_index=15,
    model_cls=None,
    modality=None,
    expected_output=None,
    expected_loss=None,
    real_checkpoint=None,
    revision=None,
):
    def docstring_decorator(fn):
        # model_class defaults to function's class if not specified otherwise
        model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls

        if model_class[:2] == "TF":
            sample_docstrings = TF_SAMPLE_DOCSTRINGS
        elif model_class[:4] == "Flax":
            sample_docstrings = FLAX_SAMPLE_DOCSTRINGS
        else:
            sample_docstrings = PT_SAMPLE_DOCSTRINGS

        # putting all kwargs for docstrings in a dict to be used
        # with the `.format(**doc_kwargs)`. Note that string might
        # be formatted with non-existing keys, which is fine.
        doc_kwargs = {
            "model_class": model_class,
            "processor_class": processor_class,
            "checkpoint": checkpoint,
            "mask": mask,
            "qa_target_start_index": qa_target_start_index,
            "qa_target_end_index": qa_target_end_index,
            "expected_output": expected_output,
            "expected_loss": expected_loss,
            "real_checkpoint": real_checkpoint,
            "fake_checkpoint": checkpoint,
            "true": "{true}",  # For <Tip warning={true}> syntax that conflicts with formatting.
        }

        if ("SequenceClassification" in model_class or "AudioClassification" in model_class) and modality == "audio":
            code_sample = sample_docstrings["AudioClassification"]
        elif "SequenceClassification" in model_class:
            code_sample = sample_docstrings["SequenceClassification"]
        elif "QuestionAnswering" in model_class:
            code_sample = sample_docstrings["QuestionAnswering"]
        elif "TokenClassification" in model_class:
            code_sample = sample_docstrings["TokenClassification"]
        elif "MultipleChoice" in model_class:
            code_sample = sample_docstrings["MultipleChoice"]
        elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
            code_sample = sample_docstrings["MaskedLM"]
        elif "LMHead" in model_class or "CausalLM" in model_class:
            code_sample = sample_docstrings["LMHead"]
        elif "CTC" in model_class:
            code_sample = sample_docstrings["CTC"]
        elif "AudioFrameClassification" in model_class:
            code_sample = sample_docstrings["AudioFrameClassification"]
        elif "XVector" in model_class and modality == "audio":
            code_sample = sample_docstrings["AudioXVector"]
        elif "Model" in model_class and modality == "audio":
            code_sample = sample_docstrings["SpeechBaseModel"]
        elif "Model" in model_class and modality == "vision":
            code_sample = sample_docstrings["VisionBaseModel"]
        elif "Model" in model_class or "Encoder" in model_class:
            code_sample = sample_docstrings["BaseModel"]
        elif "ImageClassification" in model_class:
            code_sample = sample_docstrings["ImageClassification"]
        else:
            raise ValueError(f"Docstring can't be built for model {model_class}")

        code_sample = filter_outputs_from_example(
            code_sample, expected_output=expected_output, expected_loss=expected_loss
        )
        if real_checkpoint is not None:
            code_sample = FAKE_MODEL_DISCLAIMER + code_sample
        func_doc = (fn.__doc__ or "") + "".join(docstr)
        output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class)
        built_doc = code_sample.format(**doc_kwargs)
        if revision is not None:
            if re.match(r"^refs/pr/\\d+", revision):
                raise ValueError(
                    f"The provided revision '{revision}' is incorrect. It should point to"
                    " a pull request reference on the hub like 'refs/pr/6'"
                )
            built_doc = built_doc.replace(
                f'from_pretrained("{checkpoint}")', f'from_pretrained("{checkpoint}", revision="{revision}")'
            )
        fn.__doc__ = func_doc + output_doc + built_doc
        return fn

    return docstring_decorator


def replace_return_docstrings(output_type=None, config_class=None):
    def docstring_decorator(fn):
        func_doc = fn.__doc__
        lines = func_doc.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            indent = len(_get_indent(lines[i]))
            lines[i] = _prepare_output_docstrings(output_type, config_class, min_indent=indent)
            func_doc = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, "
                f"current docstring is:\n{func_doc}"
            )
        fn.__doc__ = func_doc
        return fn

    return docstring_decorator


def copy_func(f):
    """Returns a copy of a function f."""
    # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
    g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__)
    g = functools.update_wrapper(g, f)
    g.__kwdefaults__ = f.__kwdefaults__
    return g