Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import InferenceClient | |
# Environment variables | |
os.environ["TOKENIZERS_PARALLELISM"] = "0" | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
# os.environ["GRADIO_CACHE_DIR"] = "/home/jwy4/gradio_cache" | |
# Initialize Hugging Face Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load model and tokenizer (if you want to use a local model, uncomment and use the load_model_and_tokenizer function) | |
model = None | |
tokenizer = None | |
def load_model_and_tokenizer(model_name, dtype, kv_bits): | |
global model, tokenizer | |
if model is None or tokenizer is None: | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
special_tokens = {"pad_token": "<PAD>"} | |
tokenizer.add_special_tokens(special_tokens) | |
config = AutoConfig.from_pretrained(model_name) | |
if kv_bits != "unquantized": | |
quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" | |
setattr(config, "quantizer_path", quantizer_path) | |
dtype = torch.__dict__.get(dtype, torch.float32) | |
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") | |
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: | |
model.resize_token_embeddings(len(tokenizer)) | |
tokenizer.padding_side = "left" | |
model.config.pad_token_id = tokenizer.pad_token_id | |
return model, tokenizer | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Initialize Gradio ChatInterface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
theme="default", | |
title="1bit llama3 by xMAD.ai", | |
description="The first industrial level 1 bit quantization Llama3, we can achieve 800 tokens per second on NVIDIA V100 adn 1200 on NVIDIA A100, 90%% cost down of your cloud hostin cost", | |
css=".scrollable { height: 400px; overflow-y: auto; padding: 10px; border: 1px solid #ccc; }" | |
) | |
if __name__ == "__main__": | |
# Uncomment if using local model loading | |
# load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1") | |
demo.launch() | |