Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import base64 | |
import os | |
from io import BytesIO | |
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union | |
import numpy as np | |
import requests | |
from packaging import version | |
from .utils import ( | |
ExplicitEnum, | |
is_jax_tensor, | |
is_tf_tensor, | |
is_torch_available, | |
is_torch_tensor, | |
is_vision_available, | |
logging, | |
requires_backends, | |
to_numpy, | |
) | |
from .utils.constants import ( # noqa: F401 | |
IMAGENET_DEFAULT_MEAN, | |
IMAGENET_DEFAULT_STD, | |
IMAGENET_STANDARD_MEAN, | |
IMAGENET_STANDARD_STD, | |
OPENAI_CLIP_MEAN, | |
OPENAI_CLIP_STD, | |
) | |
if is_vision_available(): | |
import PIL.Image | |
import PIL.ImageOps | |
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
PILImageResampling = PIL.Image.Resampling | |
else: | |
PILImageResampling = PIL.Image | |
if TYPE_CHECKING: | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
ImageInput = Union[ | |
"PIL.Image.Image", np.ndarray, "torch.Tensor", List["PIL.Image.Image"], List[np.ndarray], List["torch.Tensor"] | |
] # noqa | |
class ChannelDimension(ExplicitEnum): | |
FIRST = "channels_first" | |
LAST = "channels_last" | |
class AnnotationFormat(ExplicitEnum): | |
COCO_DETECTION = "coco_detection" | |
COCO_PANOPTIC = "coco_panoptic" | |
class AnnotionFormat(ExplicitEnum): | |
COCO_DETECTION = AnnotationFormat.COCO_DETECTION.value | |
COCO_PANOPTIC = AnnotationFormat.COCO_PANOPTIC.value | |
AnnotationType = Dict[str, Union[int, str, List[Dict]]] | |
def is_pil_image(img): | |
return is_vision_available() and isinstance(img, PIL.Image.Image) | |
def is_valid_image(img): | |
return ( | |
(is_vision_available() and isinstance(img, PIL.Image.Image)) | |
or isinstance(img, np.ndarray) | |
or is_torch_tensor(img) | |
or is_tf_tensor(img) | |
or is_jax_tensor(img) | |
) | |
def valid_images(imgs): | |
# If we have an list of images, make sure every image is valid | |
if isinstance(imgs, (list, tuple)): | |
for img in imgs: | |
if not valid_images(img): | |
return False | |
# If not a list of tuple, we have been given a single image or batched tensor of images | |
elif not is_valid_image(imgs): | |
return False | |
return True | |
def is_batched(img): | |
if isinstance(img, (list, tuple)): | |
return is_valid_image(img[0]) | |
return False | |
def is_scaled_image(image: np.ndarray) -> bool: | |
""" | |
Checks to see whether the pixel values have already been rescaled to [0, 1]. | |
""" | |
if image.dtype == np.uint8: | |
return False | |
# It's possible the image has pixel values in [0, 255] but is of floating type | |
return np.min(image) >= 0 and np.max(image) <= 1 | |
def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]: | |
""" | |
Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1. | |
If the input is a batch of images, it is converted to a list of images. | |
Args: | |
images (`ImageInput`): | |
Image of images to turn into a list of images. | |
expected_ndims (`int`, *optional*, defaults to 3): | |
Expected number of dimensions for a single input image. If the input image has a different number of | |
dimensions, an error is raised. | |
""" | |
if is_batched(images): | |
return images | |
# Either the input is a single image, in which case we create a list of length 1 | |
if isinstance(images, PIL.Image.Image): | |
# PIL images are never batched | |
return [images] | |
if is_valid_image(images): | |
if images.ndim == expected_ndims + 1: | |
# Batch of images | |
images = list(images) | |
elif images.ndim == expected_ndims: | |
# Single image | |
images = [images] | |
else: | |
raise ValueError( | |
f"Invalid image shape. Expected either {expected_ndims + 1} or {expected_ndims} dimensions, but got" | |
f" {images.ndim} dimensions." | |
) | |
return images | |
raise ValueError( | |
"Invalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or " | |
f"jax.ndarray, but got {type(images)}." | |
) | |
def to_numpy_array(img) -> np.ndarray: | |
if not is_valid_image(img): | |
raise ValueError(f"Invalid image type: {type(img)}") | |
if is_vision_available() and isinstance(img, PIL.Image.Image): | |
return np.array(img) | |
return to_numpy(img) | |
def infer_channel_dimension_format( | |
image: np.ndarray, num_channels: Optional[Union[int, Tuple[int, ...]]] = None | |
) -> ChannelDimension: | |
""" | |
Infers the channel dimension format of `image`. | |
Args: | |
image (`np.ndarray`): | |
The image to infer the channel dimension of. | |
num_channels (`int` or `Tuple[int, ...]`, *optional*, defaults to `(1, 3)`): | |
The number of channels of the image. | |
Returns: | |
The channel dimension of the image. | |
""" | |
num_channels = num_channels if num_channels is not None else (1, 3) | |
num_channels = (num_channels,) if isinstance(num_channels, int) else num_channels | |
if image.ndim == 3: | |
first_dim, last_dim = 0, 2 | |
elif image.ndim == 4: | |
first_dim, last_dim = 1, 3 | |
else: | |
raise ValueError(f"Unsupported number of image dimensions: {image.ndim}") | |
if image.shape[first_dim] in num_channels: | |
return ChannelDimension.FIRST | |
elif image.shape[last_dim] in num_channels: | |
return ChannelDimension.LAST | |
raise ValueError("Unable to infer channel dimension format") | |
def get_channel_dimension_axis( | |
image: np.ndarray, input_data_format: Optional[Union[ChannelDimension, str]] = None | |
) -> int: | |
""" | |
Returns the channel dimension axis of the image. | |
Args: | |
image (`np.ndarray`): | |
The image to get the channel dimension axis of. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format of the image. If `None`, will infer the channel dimension from the image. | |
Returns: | |
The channel dimension axis of the image. | |
""" | |
if input_data_format is None: | |
input_data_format = infer_channel_dimension_format(image) | |
if input_data_format == ChannelDimension.FIRST: | |
return image.ndim - 3 | |
elif input_data_format == ChannelDimension.LAST: | |
return image.ndim - 1 | |
raise ValueError(f"Unsupported data format: {input_data_format}") | |
def get_image_size(image: np.ndarray, channel_dim: ChannelDimension = None) -> Tuple[int, int]: | |
""" | |
Returns the (height, width) dimensions of the image. | |
Args: | |
image (`np.ndarray`): | |
The image to get the dimensions of. | |
channel_dim (`ChannelDimension`, *optional*): | |
Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image. | |
Returns: | |
A tuple of the image's height and width. | |
""" | |
if channel_dim is None: | |
channel_dim = infer_channel_dimension_format(image) | |
if channel_dim == ChannelDimension.FIRST: | |
return image.shape[-2], image.shape[-1] | |
elif channel_dim == ChannelDimension.LAST: | |
return image.shape[-3], image.shape[-2] | |
else: | |
raise ValueError(f"Unsupported data format: {channel_dim}") | |
def is_valid_annotation_coco_detection(annotation: Dict[str, Union[List, Tuple]]) -> bool: | |
if ( | |
isinstance(annotation, dict) | |
and "image_id" in annotation | |
and "annotations" in annotation | |
and isinstance(annotation["annotations"], (list, tuple)) | |
and ( | |
# an image can have no annotations | |
len(annotation["annotations"]) == 0 or isinstance(annotation["annotations"][0], dict) | |
) | |
): | |
return True | |
return False | |
def is_valid_annotation_coco_panoptic(annotation: Dict[str, Union[List, Tuple]]) -> bool: | |
if ( | |
isinstance(annotation, dict) | |
and "image_id" in annotation | |
and "segments_info" in annotation | |
and "file_name" in annotation | |
and isinstance(annotation["segments_info"], (list, tuple)) | |
and ( | |
# an image can have no segments | |
len(annotation["segments_info"]) == 0 or isinstance(annotation["segments_info"][0], dict) | |
) | |
): | |
return True | |
return False | |
def valid_coco_detection_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool: | |
return all(is_valid_annotation_coco_detection(ann) for ann in annotations) | |
def valid_coco_panoptic_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool: | |
return all(is_valid_annotation_coco_panoptic(ann) for ann in annotations) | |
def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] = None) -> "PIL.Image.Image": | |
""" | |
Loads `image` to a PIL Image. | |
Args: | |
image (`str` or `PIL.Image.Image`): | |
The image to convert to the PIL Image format. | |
timeout (`float`, *optional*): | |
The timeout value in seconds for the URL request. | |
Returns: | |
`PIL.Image.Image`: A PIL Image. | |
""" | |
requires_backends(load_image, ["vision"]) | |
if isinstance(image, str): | |
if image.startswith("http://") or image.startswith("https://"): | |
# We need to actually check for a real protocol, otherwise it's impossible to use a local file | |
# like http_huggingface_co.png | |
image = PIL.Image.open(BytesIO(requests.get(image, timeout=timeout).content)) | |
elif os.path.isfile(image): | |
image = PIL.Image.open(image) | |
else: | |
if image.startswith("data:image/"): | |
image = image.split(",")[1] | |
# Try to load as base64 | |
try: | |
b64 = base64.b64decode(image, validate=True) | |
image = PIL.Image.open(BytesIO(b64)) | |
except Exception as e: | |
raise ValueError( | |
f"Incorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got {image}. Failed with {e}" | |
) | |
elif isinstance(image, PIL.Image.Image): | |
image = image | |
else: | |
raise ValueError( | |
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image." | |
) | |
image = PIL.ImageOps.exif_transpose(image) | |
image = image.convert("RGB") | |
return image | |
def validate_preprocess_arguments( | |
do_rescale: Optional[bool] = None, | |
rescale_factor: Optional[float] = None, | |
do_normalize: Optional[bool] = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_pad: Optional[bool] = None, | |
size_divisibility: Optional[int] = None, | |
do_center_crop: Optional[bool] = None, | |
crop_size: Optional[Dict[str, int]] = None, | |
do_resize: Optional[bool] = None, | |
size: Optional[Dict[str, int]] = None, | |
resample: Optional["PILImageResampling"] = None, | |
): | |
""" | |
Checks validity of typically used arguments in an `ImageProcessor` `preprocess` method. | |
Raises `ValueError` if arguments incompatibility is caught. | |
Many incompatibilities are model-specific. `do_pad` sometimes needs `size_divisor`, | |
sometimes `size_divisibility`, and sometimes `size`. New models and processors added should follow | |
existing arguments when possible. | |
""" | |
if do_rescale and rescale_factor is None: | |
raise ValueError("rescale_factor must be specified if do_rescale is True.") | |
if do_pad and size_divisibility is None: | |
# Here, size_divisor might be passed as the value of size | |
raise ValueError( | |
"Depending on moel, size_divisibility, size_divisor, pad_size or size must be specified if do_pad is True." | |
) | |
if do_normalize and (image_mean is None or image_std is None): | |
raise ValueError("image_mean and image_std must both be specified if do_normalize is True.") | |
if do_center_crop and crop_size is None: | |
raise ValueError("crop_size must be specified if do_center_crop is True.") | |
if do_resize and (size is None or resample is None): | |
raise ValueError("size and resample must be specified if do_resize is True.") | |
# In the future we can add a TF implementation here when we have TF models. | |
class ImageFeatureExtractionMixin: | |
""" | |
Mixin that contain utilities for preparing image features. | |
""" | |
def _ensure_format_supported(self, image): | |
if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image): | |
raise ValueError( | |
f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and " | |
"`torch.Tensor` are." | |
) | |
def to_pil_image(self, image, rescale=None): | |
""" | |
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if | |
needed. | |
Args: | |
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`): | |
The image to convert to the PIL Image format. | |
rescale (`bool`, *optional*): | |
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will | |
default to `True` if the image type is a floating type, `False` otherwise. | |
""" | |
self._ensure_format_supported(image) | |
if is_torch_tensor(image): | |
image = image.numpy() | |
if isinstance(image, np.ndarray): | |
if rescale is None: | |
# rescale default to the array being of floating type. | |
rescale = isinstance(image.flat[0], np.floating) | |
# If the channel as been moved to first dim, we put it back at the end. | |
if image.ndim == 3 and image.shape[0] in [1, 3]: | |
image = image.transpose(1, 2, 0) | |
if rescale: | |
image = image * 255 | |
image = image.astype(np.uint8) | |
return PIL.Image.fromarray(image) | |
return image | |
def convert_rgb(self, image): | |
""" | |
Converts `PIL.Image.Image` to RGB format. | |
Args: | |
image (`PIL.Image.Image`): | |
The image to convert. | |
""" | |
self._ensure_format_supported(image) | |
if not isinstance(image, PIL.Image.Image): | |
return image | |
return image.convert("RGB") | |
def rescale(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray: | |
""" | |
Rescale a numpy image by scale amount | |
""" | |
self._ensure_format_supported(image) | |
return image * scale | |
def to_numpy_array(self, image, rescale=None, channel_first=True): | |
""" | |
Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first | |
dimension. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image to convert to a NumPy array. | |
rescale (`bool`, *optional*): | |
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will | |
default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise. | |
channel_first (`bool`, *optional*, defaults to `True`): | |
Whether or not to permute the dimensions of the image to put the channel dimension first. | |
""" | |
self._ensure_format_supported(image) | |
if isinstance(image, PIL.Image.Image): | |
image = np.array(image) | |
if is_torch_tensor(image): | |
image = image.numpy() | |
rescale = isinstance(image.flat[0], np.integer) if rescale is None else rescale | |
if rescale: | |
image = self.rescale(image.astype(np.float32), 1 / 255.0) | |
if channel_first and image.ndim == 3: | |
image = image.transpose(2, 0, 1) | |
return image | |
def expand_dims(self, image): | |
""" | |
Expands 2-dimensional `image` to 3 dimensions. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image to expand. | |
""" | |
self._ensure_format_supported(image) | |
# Do nothing if PIL image | |
if isinstance(image, PIL.Image.Image): | |
return image | |
if is_torch_tensor(image): | |
image = image.unsqueeze(0) | |
else: | |
image = np.expand_dims(image, axis=0) | |
return image | |
def normalize(self, image, mean, std, rescale=False): | |
""" | |
Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array | |
if it's a PIL Image. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image to normalize. | |
mean (`List[float]` or `np.ndarray` or `torch.Tensor`): | |
The mean (per channel) to use for normalization. | |
std (`List[float]` or `np.ndarray` or `torch.Tensor`): | |
The standard deviation (per channel) to use for normalization. | |
rescale (`bool`, *optional*, defaults to `False`): | |
Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will | |
happen automatically. | |
""" | |
self._ensure_format_supported(image) | |
if isinstance(image, PIL.Image.Image): | |
image = self.to_numpy_array(image, rescale=True) | |
# If the input image is a PIL image, it automatically gets rescaled. If it's another | |
# type it may need rescaling. | |
elif rescale: | |
if isinstance(image, np.ndarray): | |
image = self.rescale(image.astype(np.float32), 1 / 255.0) | |
elif is_torch_tensor(image): | |
image = self.rescale(image.float(), 1 / 255.0) | |
if isinstance(image, np.ndarray): | |
if not isinstance(mean, np.ndarray): | |
mean = np.array(mean).astype(image.dtype) | |
if not isinstance(std, np.ndarray): | |
std = np.array(std).astype(image.dtype) | |
elif is_torch_tensor(image): | |
import torch | |
if not isinstance(mean, torch.Tensor): | |
mean = torch.tensor(mean) | |
if not isinstance(std, torch.Tensor): | |
std = torch.tensor(std) | |
if image.ndim == 3 and image.shape[0] in [1, 3]: | |
return (image - mean[:, None, None]) / std[:, None, None] | |
else: | |
return (image - mean) / std | |
def resize(self, image, size, resample=None, default_to_square=True, max_size=None): | |
""" | |
Resizes `image`. Enforces conversion of input to PIL.Image. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image to resize. | |
size (`int` or `Tuple[int, int]`): | |
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be | |
matched to this. | |
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If | |
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to | |
this number. i.e, if height > width, then image will be rescaled to (size * height / width, size). | |
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`): | |
The filter to user for resampling. | |
default_to_square (`bool`, *optional*, defaults to `True`): | |
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a | |
square (`size`,`size`). If set to `False`, will replicate | |
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize) | |
with support for resizing only the smallest edge and providing an optional `max_size`. | |
max_size (`int`, *optional*, defaults to `None`): | |
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is | |
greater than `max_size` after being resized according to `size`, then the image is resized again so | |
that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller | |
edge may be shorter than `size`. Only used if `default_to_square` is `False`. | |
Returns: | |
image: A resized `PIL.Image.Image`. | |
""" | |
resample = resample if resample is not None else PILImageResampling.BILINEAR | |
self._ensure_format_supported(image) | |
if not isinstance(image, PIL.Image.Image): | |
image = self.to_pil_image(image) | |
if isinstance(size, list): | |
size = tuple(size) | |
if isinstance(size, int) or len(size) == 1: | |
if default_to_square: | |
size = (size, size) if isinstance(size, int) else (size[0], size[0]) | |
else: | |
width, height = image.size | |
# specified size only for the smallest edge | |
short, long = (width, height) if width <= height else (height, width) | |
requested_new_short = size if isinstance(size, int) else size[0] | |
if short == requested_new_short: | |
return image | |
new_short, new_long = requested_new_short, int(requested_new_short * long / short) | |
if max_size is not None: | |
if max_size <= requested_new_short: | |
raise ValueError( | |
f"max_size = {max_size} must be strictly greater than the requested " | |
f"size for the smaller edge size = {size}" | |
) | |
if new_long > max_size: | |
new_short, new_long = int(max_size * new_short / new_long), max_size | |
size = (new_short, new_long) if width <= height else (new_long, new_short) | |
return image.resize(size, resample=resample) | |
def center_crop(self, image, size): | |
""" | |
Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the | |
size given, it will be padded (so the returned result has the size asked). | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)): | |
The image to resize. | |
size (`int` or `Tuple[int, int]`): | |
The size to which crop the image. | |
Returns: | |
new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels, | |
height, width). | |
""" | |
self._ensure_format_supported(image) | |
if not isinstance(size, tuple): | |
size = (size, size) | |
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width) | |
if is_torch_tensor(image) or isinstance(image, np.ndarray): | |
if image.ndim == 2: | |
image = self.expand_dims(image) | |
image_shape = image.shape[1:] if image.shape[0] in [1, 3] else image.shape[:2] | |
else: | |
image_shape = (image.size[1], image.size[0]) | |
top = (image_shape[0] - size[0]) // 2 | |
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result. | |
left = (image_shape[1] - size[1]) // 2 | |
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result. | |
# For PIL Images we have a method to crop directly. | |
if isinstance(image, PIL.Image.Image): | |
return image.crop((left, top, right, bottom)) | |
# Check if image is in (n_channels, height, width) or (height, width, n_channels) format | |
channel_first = True if image.shape[0] in [1, 3] else False | |
# Transpose (height, width, n_channels) format images | |
if not channel_first: | |
if isinstance(image, np.ndarray): | |
image = image.transpose(2, 0, 1) | |
if is_torch_tensor(image): | |
image = image.permute(2, 0, 1) | |
# Check if cropped area is within image boundaries | |
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]: | |
return image[..., top:bottom, left:right] | |
# Otherwise, we may need to pad if the image is too small. Oh joy... | |
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1])) | |
if isinstance(image, np.ndarray): | |
new_image = np.zeros_like(image, shape=new_shape) | |
elif is_torch_tensor(image): | |
new_image = image.new_zeros(new_shape) | |
top_pad = (new_shape[-2] - image_shape[0]) // 2 | |
bottom_pad = top_pad + image_shape[0] | |
left_pad = (new_shape[-1] - image_shape[1]) // 2 | |
right_pad = left_pad + image_shape[1] | |
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image | |
top += top_pad | |
bottom += top_pad | |
left += left_pad | |
right += left_pad | |
new_image = new_image[ | |
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right) | |
] | |
return new_image | |
def flip_channel_order(self, image): | |
""" | |
Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of | |
`image` to a NumPy array if it's a PIL Image. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should | |
be first. | |
""" | |
self._ensure_format_supported(image) | |
if isinstance(image, PIL.Image.Image): | |
image = self.to_numpy_array(image) | |
return image[::-1, :, :] | |
def rotate(self, image, angle, resample=None, expand=0, center=None, translate=None, fillcolor=None): | |
""" | |
Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees | |
counter clockwise around its centre. | |
Args: | |
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`): | |
The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before | |
rotating. | |
Returns: | |
image: A rotated `PIL.Image.Image`. | |
""" | |
resample = resample if resample is not None else PIL.Image.NEAREST | |
self._ensure_format_supported(image) | |
if not isinstance(image, PIL.Image.Image): | |
image = self.to_pil_image(image) | |
return image.rotate( | |
angle, resample=resample, expand=expand, center=center, translate=translate, fillcolor=fillcolor | |
) | |
def promote_annotation_format(annotation_format: Union[AnnotionFormat, AnnotationFormat]) -> AnnotationFormat: | |
# can be removed when `AnnotionFormat` is fully deprecated | |
return AnnotationFormat(annotation_format.value) | |
def validate_annotations( | |
annotation_format: AnnotationFormat, | |
supported_annotation_formats: Tuple[AnnotationFormat, ...], | |
annotations: List[Dict], | |
) -> None: | |
if isinstance(annotation_format, AnnotionFormat): | |
logger.warning_once( | |
f"`{annotation_format.__class__.__name__}` is deprecated and will be removed in v4.38. " | |
f"Please use `{AnnotationFormat.__name__}` instead." | |
) | |
annotation_format = promote_annotation_format(annotation_format) | |
if annotation_format not in supported_annotation_formats: | |
raise ValueError(f"Unsupported annotation format: {format} must be one of {supported_annotation_formats}") | |
if annotation_format is AnnotationFormat.COCO_DETECTION: | |
if not valid_coco_detection_annotations(annotations): | |
raise ValueError( | |
"Invalid COCO detection annotations. Annotations must a dict (single image) or list of dicts " | |
"(batch of images) with the following keys: `image_id` and `annotations`, with the latter " | |
"being a list of annotations in the COCO format." | |
) | |
if annotation_format is AnnotationFormat.COCO_PANOPTIC: | |
if not valid_coco_panoptic_annotations(annotations): | |
raise ValueError( | |
"Invalid COCO panoptic annotations. Annotations must a dict (single image) or list of dicts " | |
"(batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with " | |
"the latter being a list of annotations in the COCO format." | |
) | |
def validate_kwargs(valid_processor_keys: List[str], captured_kwargs: List[str]): | |
unused_keys = set(captured_kwargs).difference(set(valid_processor_keys)) | |
if unused_keys: | |
unused_key_str = ", ".join(unused_keys) | |
# TODO raise a warning here instead of simply logging? | |
logger.warning(f"Unused or unrecognized kwargs: {unused_key_str}.") | |