Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 NetEase, Inc. and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from ..utils import is_accelerate_available, is_eetq_available, logging | |
if is_eetq_available(): | |
import eetq | |
import torch.nn as nn | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
logger = logging.get_logger(__name__) | |
def _replace_with_eetq_linear( | |
model, | |
modules_to_not_convert=None, | |
current_key_name=None, | |
quantization_config=None, | |
has_been_replaced=False, | |
pre_quantized=False, | |
): | |
""" | |
Private method that wraps the recursion for module replacement. | |
Returns the converted model and a boolean that indicates if the conversion has been successfull or not. | |
""" | |
if current_key_name is None: | |
current_key_name = [] | |
for name, module in model.named_children(): | |
current_key_name.append(name) | |
if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert: | |
# Check if the current key is not in the `modules_to_not_convert` | |
current_key_name_str = ".".join(current_key_name) | |
if not any( | |
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert | |
): | |
with init_empty_weights(): | |
in_features = module.in_features | |
out_features = module.out_features | |
model._modules[name] = eetq.EetqLinear( | |
in_features, out_features, module.bias is not None, module.weight.device | |
) | |
if pre_quantized: | |
model._modules[name].register_scale(module.weight.device) | |
has_been_replaced = True | |
# Force requires grad to False to avoid unexpected errors | |
model._modules[name].requires_grad_(False) | |
if len(list(module.children())) > 0: | |
_, has_been_replaced = _replace_with_eetq_linear( | |
module, | |
modules_to_not_convert, | |
current_key_name, | |
quantization_config, | |
has_been_replaced=has_been_replaced, | |
pre_quantized=pre_quantized, | |
) | |
# Remove the last key for recursion | |
current_key_name.pop(-1) | |
return model, has_been_replaced | |
def replace_with_eetq_linear( | |
model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False | |
): | |
""" | |
A helper function to replace all `torch.nn.Linear` modules by `eetq.EetqLinear` modules from the `eetq` | |
library. This will enable running your models using high performance int8 weight-only gemm kerner from | |
FasterTransformer and TensorRT-LLM. Make sure `eetq` compiled with the correct CUDA | |
version of your hardware is installed before running this function. EETQ shall be installed via the source | |
'https://github.com/NetEase-FuXi/EETQ' | |
The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should | |
be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no | |
CPU/GPU memory is required to run this function. Each weight will be quantized along the channel. | |
Parameters: | |
model (`torch.nn.Module`): | |
Input model or `torch.nn.Module` as the function is run recursively. | |
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`): | |
Names of the modules to not convert in `EetqLinear`. In practice we keep the `lm_head` in full precision | |
for numerical stability reasons. | |
current_key_name (`List[`str`]`, *optional*): | |
An array to track the current key of the recursion. This is used to check whether the current key (part of | |
it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or | |
`disk`). | |
""" | |
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert | |
if quantization_config.modules_to_not_convert is not None: | |
modules_to_not_convert.extend(quantization_config.modules_to_not_convert) | |
modules_to_not_convert = list(set(modules_to_not_convert)) | |
model, has_been_replaced = _replace_with_eetq_linear( | |
model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized | |
) | |
if not has_been_replaced: | |
logger.warning( | |
"You are loading your model using eetq but no linear modules were found in your model." | |
" Please double check your model architecture, or submit an issue on github if you think this is" | |
" a bug." | |
) | |
return model | |