Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Configuration base class and utilities.""" | |
import copy | |
import json | |
import os | |
import warnings | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Any, Dict, List, Optional, Union | |
import requests | |
import yaml | |
from huggingface_hub import model_info | |
from huggingface_hub.utils import HFValidationError | |
from . import __version__ | |
from .models.auto.modeling_auto import ( | |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, | |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, | |
MODEL_FOR_CTC_MAPPING_NAMES, | |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, | |
MODEL_FOR_MASKED_LM_MAPPING_NAMES, | |
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, | |
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, | |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES, | |
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, | |
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, | |
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
) | |
from .training_args import ParallelMode | |
from .utils import ( | |
MODEL_CARD_NAME, | |
cached_file, | |
is_datasets_available, | |
is_offline_mode, | |
is_tf_available, | |
is_tokenizers_available, | |
is_torch_available, | |
logging, | |
) | |
TASK_MAPPING = { | |
"text-generation": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, | |
"image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
"image-segmentation": MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, | |
"fill-mask": MODEL_FOR_MASKED_LM_MAPPING_NAMES, | |
"object-detection": MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, | |
"question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, | |
"text2text-generation": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
"text-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, | |
"table-question-answering": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, | |
"token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, | |
"audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, | |
"automatic-speech-recognition": {**MODEL_FOR_CTC_MAPPING_NAMES, **MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES}, | |
"zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
} | |
logger = logging.get_logger(__name__) | |
class ModelCard: | |
r""" | |
Structured Model Card class. Store model card as well as methods for loading/downloading/saving model cards. | |
Please read the following paper for details and explanation on the sections: "Model Cards for Model Reporting" by | |
Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, | |
Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993 | |
Note: A model card can be loaded and saved to disk. | |
""" | |
def __init__(self, **kwargs): | |
warnings.warn( | |
"The class `ModelCard` is deprecated and will be removed in version 5 of Transformers", FutureWarning | |
) | |
# Recommended attributes from https://arxiv.org/abs/1810.03993 (see papers) | |
self.model_details = kwargs.pop("model_details", {}) | |
self.intended_use = kwargs.pop("intended_use", {}) | |
self.factors = kwargs.pop("factors", {}) | |
self.metrics = kwargs.pop("metrics", {}) | |
self.evaluation_data = kwargs.pop("evaluation_data", {}) | |
self.training_data = kwargs.pop("training_data", {}) | |
self.quantitative_analyses = kwargs.pop("quantitative_analyses", {}) | |
self.ethical_considerations = kwargs.pop("ethical_considerations", {}) | |
self.caveats_and_recommendations = kwargs.pop("caveats_and_recommendations", {}) | |
# Open additional attributes | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
def save_pretrained(self, save_directory_or_file): | |
"""Save a model card object to the directory or file `save_directory_or_file`.""" | |
if os.path.isdir(save_directory_or_file): | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_model_card_file = os.path.join(save_directory_or_file, MODEL_CARD_NAME) | |
else: | |
output_model_card_file = save_directory_or_file | |
self.to_json_file(output_model_card_file) | |
logger.info(f"Model card saved in {output_model_card_file}") | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
r""" | |
Instantiate a [`ModelCard`] from a pre-trained model model card. | |
Parameters: | |
pretrained_model_name_or_path: either: | |
- a string, the *model id* of a pretrained model card hosted inside a model repo on huggingface.co. | |
- a path to a *directory* containing a model card file saved using the [`~ModelCard.save_pretrained`] | |
method, e.g.: `./my_model_directory/`. | |
- a path or url to a saved model card JSON *file*, e.g.: `./my_model_directory/modelcard.json`. | |
cache_dir: (*optional*) string: | |
Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache | |
should not be used. | |
kwargs: (*optional*) dict: key/value pairs with which to update the ModelCard object after loading. | |
- The values in kwargs of any keys which are model card attributes will be used to override the loaded | |
values. | |
- Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the | |
*return_unused_kwargs* keyword parameter. | |
proxies: (*optional*) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. | |
return_unused_kwargs: (*optional*) bool: | |
- If False, then this function returns just the final model card object. | |
- If True, then this functions returns a tuple *(model card, unused_kwargs)* where *unused_kwargs* is a | |
dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of | |
kwargs which has not been used to update *ModelCard* and is otherwise ignored. | |
Examples: | |
```python | |
# Download model card from huggingface.co and cache. | |
modelcard = ModelCard.from_pretrained("google-bert/bert-base-uncased") | |
# Model card was saved using *save_pretrained('./test/saved_model/')* | |
modelcard = ModelCard.from_pretrained("./test/saved_model/") | |
modelcard = ModelCard.from_pretrained("./test/saved_model/modelcard.json") | |
modelcard = ModelCard.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False) | |
```""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
proxies = kwargs.pop("proxies", None) | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
user_agent = {"file_type": "model_card"} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isfile(pretrained_model_name_or_path): | |
resolved_model_card_file = pretrained_model_name_or_path | |
is_local = True | |
else: | |
try: | |
# Load from URL or cache if already cached | |
resolved_model_card_file = cached_file( | |
pretrained_model_name_or_path, | |
filename=MODEL_CARD_NAME, | |
cache_dir=cache_dir, | |
proxies=proxies, | |
user_agent=user_agent, | |
) | |
if is_local: | |
logger.info(f"loading model card file {resolved_model_card_file}") | |
else: | |
logger.info(f"loading model card file {MODEL_CARD_NAME} from cache at {resolved_model_card_file}") | |
# Load model card | |
modelcard = cls.from_json_file(resolved_model_card_file) | |
except (EnvironmentError, json.JSONDecodeError): | |
# We fall back on creating an empty model card | |
modelcard = cls() | |
# Update model card with kwargs if needed | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(modelcard, key): | |
setattr(modelcard, key, value) | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
logger.info(f"Model card: {modelcard}") | |
if return_unused_kwargs: | |
return modelcard, kwargs | |
else: | |
return modelcard | |
def from_dict(cls, json_object): | |
"""Constructs a `ModelCard` from a Python dictionary of parameters.""" | |
return cls(**json_object) | |
def from_json_file(cls, json_file): | |
"""Constructs a `ModelCard` from a json file of parameters.""" | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
dict_obj = json.loads(text) | |
return cls(**dict_obj) | |
def __eq__(self, other): | |
return self.__dict__ == other.__dict__ | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path): | |
"""Save this instance to a json file.""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string()) | |
AUTOGENERATED_TRAINER_COMMENT = """ | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
""" | |
AUTOGENERATED_KERAS_COMMENT = """ | |
<!-- This model card has been generated automatically according to the information Keras had access to. You should | |
probably proofread and complete it, then remove this comment. --> | |
""" | |
TASK_TAG_TO_NAME_MAPPING = { | |
"fill-mask": "Masked Language Modeling", | |
"image-classification": "Image Classification", | |
"image-segmentation": "Image Segmentation", | |
"multiple-choice": "Multiple Choice", | |
"object-detection": "Object Detection", | |
"question-answering": "Question Answering", | |
"summarization": "Summarization", | |
"table-question-answering": "Table Question Answering", | |
"text-classification": "Text Classification", | |
"text-generation": "Causal Language Modeling", | |
"text2text-generation": "Sequence-to-sequence Language Modeling", | |
"token-classification": "Token Classification", | |
"translation": "Translation", | |
"zero-shot-classification": "Zero Shot Classification", | |
"automatic-speech-recognition": "Automatic Speech Recognition", | |
"audio-classification": "Audio Classification", | |
} | |
METRIC_TAGS = [ | |
"accuracy", | |
"bleu", | |
"f1", | |
"matthews_correlation", | |
"pearsonr", | |
"precision", | |
"recall", | |
"rouge", | |
"sacrebleu", | |
"spearmanr", | |
"wer", | |
] | |
def _listify(obj): | |
if obj is None: | |
return [] | |
elif isinstance(obj, str): | |
return [obj] | |
else: | |
return obj | |
def _insert_values_as_list(metadata, name, values): | |
if values is None: | |
return metadata | |
if isinstance(values, str): | |
values = [values] | |
values = [v for v in values if v is not None] | |
if len(values) == 0: | |
return metadata | |
metadata[name] = values | |
return metadata | |
def infer_metric_tags_from_eval_results(eval_results): | |
if eval_results is None: | |
return {} | |
result = {} | |
for key in eval_results.keys(): | |
if key.lower().replace(" ", "_") in METRIC_TAGS: | |
result[key.lower().replace(" ", "_")] = key | |
elif key.lower() == "rouge1": | |
result["rouge"] = key | |
return result | |
def _insert_value(metadata, name, value): | |
if value is None: | |
return metadata | |
metadata[name] = value | |
return metadata | |
def is_hf_dataset(dataset): | |
if not is_datasets_available(): | |
return False | |
from datasets import Dataset, IterableDataset | |
return isinstance(dataset, (Dataset, IterableDataset)) | |
def _get_mapping_values(mapping): | |
result = [] | |
for v in mapping.values(): | |
if isinstance(v, (tuple, list)): | |
result += list(v) | |
else: | |
result.append(v) | |
return result | |
class TrainingSummary: | |
model_name: str | |
language: Optional[Union[str, List[str]]] = None | |
license: Optional[str] = None | |
tags: Optional[Union[str, List[str]]] = None | |
finetuned_from: Optional[str] = None | |
tasks: Optional[Union[str, List[str]]] = None | |
dataset: Optional[Union[str, List[str]]] = None | |
dataset_tags: Optional[Union[str, List[str]]] = None | |
dataset_args: Optional[Union[str, List[str]]] = None | |
dataset_metadata: Optional[Dict[str, Any]] = None | |
eval_results: Optional[Dict[str, float]] = None | |
eval_lines: Optional[List[str]] = None | |
hyperparameters: Optional[Dict[str, Any]] = None | |
source: Optional[str] = "trainer" | |
def __post_init__(self): | |
# Infer default license from the checkpoint used, if possible. | |
if ( | |
self.license is None | |
and not is_offline_mode() | |
and self.finetuned_from is not None | |
and len(self.finetuned_from) > 0 | |
): | |
try: | |
info = model_info(self.finetuned_from) | |
for tag in info.tags: | |
if tag.startswith("license:"): | |
self.license = tag[8:] | |
except (requests.exceptions.HTTPError, requests.exceptions.ConnectionError, HFValidationError): | |
pass | |
def create_model_index(self, metric_mapping): | |
model_index = {"name": self.model_name} | |
# Dataset mapping tag -> name | |
dataset_names = _listify(self.dataset) | |
dataset_tags = _listify(self.dataset_tags) | |
dataset_args = _listify(self.dataset_args) | |
dataset_metadata = _listify(self.dataset_metadata) | |
if len(dataset_args) < len(dataset_tags): | |
dataset_args = dataset_args + [None] * (len(dataset_tags) - len(dataset_args)) | |
dataset_mapping = dict(zip(dataset_tags, dataset_names)) | |
dataset_arg_mapping = dict(zip(dataset_tags, dataset_args)) | |
dataset_metadata_mapping = dict(zip(dataset_tags, dataset_metadata)) | |
task_mapping = { | |
task: TASK_TAG_TO_NAME_MAPPING[task] for task in _listify(self.tasks) if task in TASK_TAG_TO_NAME_MAPPING | |
} | |
model_index["results"] = [] | |
if len(task_mapping) == 0 and len(dataset_mapping) == 0: | |
return [model_index] | |
if len(task_mapping) == 0: | |
task_mapping = {None: None} | |
if len(dataset_mapping) == 0: | |
dataset_mapping = {None: None} | |
# One entry per dataset and per task | |
all_possibilities = [(task_tag, ds_tag) for task_tag in task_mapping for ds_tag in dataset_mapping] | |
for task_tag, ds_tag in all_possibilities: | |
result = {} | |
if task_tag is not None: | |
result["task"] = {"name": task_mapping[task_tag], "type": task_tag} | |
if ds_tag is not None: | |
metadata = dataset_metadata_mapping.get(ds_tag, {}) | |
result["dataset"] = { | |
"name": dataset_mapping[ds_tag], | |
"type": ds_tag, | |
**metadata, | |
} | |
if dataset_arg_mapping[ds_tag] is not None: | |
result["dataset"]["args"] = dataset_arg_mapping[ds_tag] | |
if len(metric_mapping) > 0: | |
result["metrics"] = [] | |
for metric_tag, metric_name in metric_mapping.items(): | |
result["metrics"].append( | |
{ | |
"name": metric_name, | |
"type": metric_tag, | |
"value": self.eval_results[metric_name], | |
} | |
) | |
# Remove partial results to avoid the model card being rejected. | |
if "task" in result and "dataset" in result and "metrics" in result: | |
model_index["results"].append(result) | |
else: | |
logger.info(f"Dropping the following result as it does not have all the necessary fields:\n{result}") | |
return [model_index] | |
def create_metadata(self): | |
metric_mapping = infer_metric_tags_from_eval_results(self.eval_results) | |
metadata = {} | |
metadata = _insert_values_as_list(metadata, "language", self.language) | |
metadata = _insert_value(metadata, "license", self.license) | |
if self.finetuned_from is not None and isinstance(self.finetuned_from, str) and len(self.finetuned_from) > 0: | |
metadata = _insert_value(metadata, "base_model", self.finetuned_from) | |
metadata = _insert_values_as_list(metadata, "tags", self.tags) | |
metadata = _insert_values_as_list(metadata, "datasets", self.dataset_tags) | |
metadata = _insert_values_as_list(metadata, "metrics", list(metric_mapping.keys())) | |
metadata["model-index"] = self.create_model_index(metric_mapping) | |
return metadata | |
def to_model_card(self): | |
model_card = "" | |
metadata = yaml.dump(self.create_metadata(), sort_keys=False) | |
if len(metadata) > 0: | |
model_card = f"---\n{metadata}---\n" | |
# Now the model card for realsies. | |
if self.source == "trainer": | |
model_card += AUTOGENERATED_TRAINER_COMMENT | |
else: | |
model_card += AUTOGENERATED_KERAS_COMMENT | |
model_card += f"\n# {self.model_name}\n\n" | |
if self.finetuned_from is None: | |
model_card += "This model was trained from scratch on " | |
else: | |
model_card += ( | |
"This model is a fine-tuned version of" | |
f" [{self.finetuned_from}](https://huggingface.co/{self.finetuned_from}) on " | |
) | |
if self.dataset is None: | |
model_card += "an unknown dataset." | |
else: | |
if isinstance(self.dataset, str): | |
model_card += f"the {self.dataset} dataset." | |
elif isinstance(self.dataset, (tuple, list)) and len(self.dataset) == 1: | |
model_card += f"the {self.dataset[0]} dataset." | |
else: | |
model_card += ( | |
", ".join([f"the {ds}" for ds in self.dataset[:-1]]) + f" and the {self.dataset[-1]} datasets." | |
) | |
if self.eval_results is not None: | |
model_card += "\nIt achieves the following results on the evaluation set:\n" | |
model_card += "\n".join([f"- {name}: {_maybe_round(value)}" for name, value in self.eval_results.items()]) | |
model_card += "\n" | |
model_card += "\n## Model description\n\nMore information needed\n" | |
model_card += "\n## Intended uses & limitations\n\nMore information needed\n" | |
model_card += "\n## Training and evaluation data\n\nMore information needed\n" | |
model_card += "\n## Training procedure\n" | |
model_card += "\n### Training hyperparameters\n" | |
if self.hyperparameters is not None: | |
model_card += "\nThe following hyperparameters were used during training:\n" | |
model_card += "\n".join([f"- {name}: {value}" for name, value in self.hyperparameters.items()]) | |
model_card += "\n" | |
else: | |
model_card += "\nMore information needed\n" | |
if self.eval_lines is not None: | |
model_card += "\n### Training results\n\n" | |
model_card += make_markdown_table(self.eval_lines) | |
model_card += "\n" | |
model_card += "\n### Framework versions\n\n" | |
model_card += f"- Transformers {__version__}\n" | |
if self.source == "trainer" and is_torch_available(): | |
import torch | |
model_card += f"- Pytorch {torch.__version__}\n" | |
elif self.source == "keras" and is_tf_available(): | |
import tensorflow as tf | |
model_card += f"- TensorFlow {tf.__version__}\n" | |
if is_datasets_available(): | |
import datasets | |
model_card += f"- Datasets {datasets.__version__}\n" | |
if is_tokenizers_available(): | |
import tokenizers | |
model_card += f"- Tokenizers {tokenizers.__version__}\n" | |
return model_card | |
def from_trainer( | |
cls, | |
trainer, | |
language=None, | |
license=None, | |
tags=None, | |
model_name=None, | |
finetuned_from=None, | |
tasks=None, | |
dataset_tags=None, | |
dataset_metadata=None, | |
dataset=None, | |
dataset_args=None, | |
): | |
# Infer default from dataset | |
one_dataset = trainer.eval_dataset if trainer.eval_dataset is not None else trainer.train_dataset | |
if is_hf_dataset(one_dataset) and (dataset_tags is None or dataset_args is None or dataset_metadata is None): | |
default_tag = one_dataset.builder_name | |
# Those are not real datasets from the Hub so we exclude them. | |
if default_tag not in ["csv", "json", "pandas", "parquet", "text"]: | |
if dataset_metadata is None: | |
dataset_metadata = [{"config": one_dataset.config_name, "split": str(one_dataset.split)}] | |
if dataset_tags is None: | |
dataset_tags = [default_tag] | |
if dataset_args is None: | |
dataset_args = [one_dataset.config_name] | |
if dataset is None and dataset_tags is not None: | |
dataset = dataset_tags | |
# Infer default finetuned_from | |
if ( | |
finetuned_from is None | |
and hasattr(trainer.model.config, "_name_or_path") | |
and not os.path.isdir(trainer.model.config._name_or_path) | |
): | |
finetuned_from = trainer.model.config._name_or_path | |
# Infer default task tag: | |
if tasks is None: | |
model_class_name = trainer.model.__class__.__name__ | |
for task, mapping in TASK_MAPPING.items(): | |
if model_class_name in _get_mapping_values(mapping): | |
tasks = task | |
if model_name is None: | |
model_name = Path(trainer.args.output_dir).name | |
if len(model_name) == 0: | |
model_name = finetuned_from | |
# Add `generated_from_trainer` to the tags | |
if tags is None: | |
tags = ["generated_from_trainer"] | |
elif isinstance(tags, str) and tags != "generated_from_trainer": | |
tags = [tags, "generated_from_trainer"] | |
elif "generated_from_trainer" not in tags: | |
tags.append("generated_from_trainer") | |
_, eval_lines, eval_results = parse_log_history(trainer.state.log_history) | |
hyperparameters = extract_hyperparameters_from_trainer(trainer) | |
return cls( | |
language=language, | |
license=license, | |
tags=tags, | |
model_name=model_name, | |
finetuned_from=finetuned_from, | |
tasks=tasks, | |
dataset=dataset, | |
dataset_tags=dataset_tags, | |
dataset_args=dataset_args, | |
dataset_metadata=dataset_metadata, | |
eval_results=eval_results, | |
eval_lines=eval_lines, | |
hyperparameters=hyperparameters, | |
) | |
def from_keras( | |
cls, | |
model, | |
model_name, | |
keras_history=None, | |
language=None, | |
license=None, | |
tags=None, | |
finetuned_from=None, | |
tasks=None, | |
dataset_tags=None, | |
dataset=None, | |
dataset_args=None, | |
): | |
# Infer default from dataset | |
if dataset is not None: | |
if is_hf_dataset(dataset) and (dataset_tags is None or dataset_args is None): | |
default_tag = dataset.builder_name | |
# Those are not real datasets from the Hub so we exclude them. | |
if default_tag not in ["csv", "json", "pandas", "parquet", "text"]: | |
if dataset_tags is None: | |
dataset_tags = [default_tag] | |
if dataset_args is None: | |
dataset_args = [dataset.config_name] | |
if dataset is None and dataset_tags is not None: | |
dataset = dataset_tags | |
# Infer default finetuned_from | |
if ( | |
finetuned_from is None | |
and hasattr(model.config, "_name_or_path") | |
and not os.path.isdir(model.config._name_or_path) | |
): | |
finetuned_from = model.config._name_or_path | |
# Infer default task tag: | |
if tasks is None: | |
model_class_name = model.__class__.__name__ | |
for task, mapping in TASK_MAPPING.items(): | |
if model_class_name in _get_mapping_values(mapping): | |
tasks = task | |
# Add `generated_from_keras_callback` to the tags | |
if tags is None: | |
tags = ["generated_from_keras_callback"] | |
elif isinstance(tags, str) and tags != "generated_from_keras_callback": | |
tags = [tags, "generated_from_keras_callback"] | |
elif "generated_from_keras_callback" not in tags: | |
tags.append("generated_from_keras_callback") | |
if keras_history is not None: | |
_, eval_lines, eval_results = parse_keras_history(keras_history) | |
else: | |
eval_lines = [] | |
eval_results = {} | |
hyperparameters = extract_hyperparameters_from_keras(model) | |
return cls( | |
language=language, | |
license=license, | |
tags=tags, | |
model_name=model_name, | |
finetuned_from=finetuned_from, | |
tasks=tasks, | |
dataset_tags=dataset_tags, | |
dataset=dataset, | |
dataset_args=dataset_args, | |
eval_results=eval_results, | |
eval_lines=eval_lines, | |
hyperparameters=hyperparameters, | |
source="keras", | |
) | |
def parse_keras_history(logs): | |
""" | |
Parse the `logs` of either a `keras.History` object returned by `model.fit()` or an accumulated logs `dict` | |
passed to the `PushToHubCallback`. Returns lines and logs compatible with those returned by `parse_log_history`. | |
""" | |
if hasattr(logs, "history"): | |
# This looks like a `History` object | |
if not hasattr(logs, "epoch"): | |
# This history looks empty, return empty results | |
return None, [], {} | |
logs.history["epoch"] = logs.epoch | |
logs = logs.history | |
else: | |
# Training logs is a list of dicts, let's invert it to a dict of lists to match a History object | |
logs = {log_key: [single_dict[log_key] for single_dict in logs] for log_key in logs[0]} | |
lines = [] | |
for i in range(len(logs["epoch"])): | |
epoch_dict = {log_key: log_value_list[i] for log_key, log_value_list in logs.items()} | |
values = {} | |
for k, v in epoch_dict.items(): | |
if k.startswith("val_"): | |
k = "validation_" + k[4:] | |
elif k != "epoch": | |
k = "train_" + k | |
splits = k.split("_") | |
name = " ".join([part.capitalize() for part in splits]) | |
values[name] = v | |
lines.append(values) | |
eval_results = lines[-1] | |
return logs, lines, eval_results | |
def parse_log_history(log_history): | |
""" | |
Parse the `log_history` of a Trainer to get the intermediate and final evaluation results. | |
""" | |
idx = 0 | |
while idx < len(log_history) and "train_runtime" not in log_history[idx]: | |
idx += 1 | |
# If there are no training logs | |
if idx == len(log_history): | |
idx -= 1 | |
while idx >= 0 and "eval_loss" not in log_history[idx]: | |
idx -= 1 | |
if idx >= 0: | |
return None, None, log_history[idx] | |
else: | |
return None, None, None | |
# From now one we can assume we have training logs: | |
train_log = log_history[idx] | |
lines = [] | |
training_loss = "No log" | |
for i in range(idx): | |
if "loss" in log_history[i]: | |
training_loss = log_history[i]["loss"] | |
if "eval_loss" in log_history[i]: | |
metrics = log_history[i].copy() | |
_ = metrics.pop("total_flos", None) | |
epoch = metrics.pop("epoch", None) | |
step = metrics.pop("step", None) | |
_ = metrics.pop("eval_runtime", None) | |
_ = metrics.pop("eval_samples_per_second", None) | |
_ = metrics.pop("eval_steps_per_second", None) | |
_ = metrics.pop("eval_jit_compilation_time", None) | |
values = {"Training Loss": training_loss, "Epoch": epoch, "Step": step} | |
for k, v in metrics.items(): | |
if k == "eval_loss": | |
values["Validation Loss"] = v | |
else: | |
splits = k.split("_") | |
name = " ".join([part.capitalize() for part in splits[1:]]) | |
values[name] = v | |
lines.append(values) | |
idx = len(log_history) - 1 | |
while idx >= 0 and "eval_loss" not in log_history[idx]: | |
idx -= 1 | |
if idx > 0: | |
eval_results = {} | |
for key, value in log_history[idx].items(): | |
if key.startswith("eval_"): | |
key = key[5:] | |
if key not in ["runtime", "samples_per_second", "steps_per_second", "epoch", "step"]: | |
camel_cased_key = " ".join([part.capitalize() for part in key.split("_")]) | |
eval_results[camel_cased_key] = value | |
return train_log, lines, eval_results | |
else: | |
return train_log, lines, None | |
def extract_hyperparameters_from_keras(model): | |
from .modeling_tf_utils import keras | |
hyperparameters = {} | |
if hasattr(model, "optimizer") and model.optimizer is not None: | |
hyperparameters["optimizer"] = model.optimizer.get_config() | |
else: | |
hyperparameters["optimizer"] = None | |
hyperparameters["training_precision"] = keras.mixed_precision.global_policy().name | |
return hyperparameters | |
def _maybe_round(v, decimals=4): | |
if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals: | |
return f"{v:.{decimals}f}" | |
return str(v) | |
def _regular_table_line(values, col_widths): | |
values_with_space = [f"| {v}" + " " * (w - len(v) + 1) for v, w in zip(values, col_widths)] | |
return "".join(values_with_space) + "|\n" | |
def _second_table_line(col_widths): | |
values = ["|:" + "-" * w + ":" for w in col_widths] | |
return "".join(values) + "|\n" | |
def make_markdown_table(lines): | |
""" | |
Create a nice Markdown table from the results in `lines`. | |
""" | |
if lines is None or len(lines) == 0: | |
return "" | |
col_widths = {key: len(str(key)) for key in lines[0].keys()} | |
for line in lines: | |
for key, value in line.items(): | |
if col_widths[key] < len(_maybe_round(value)): | |
col_widths[key] = len(_maybe_round(value)) | |
table = _regular_table_line(list(lines[0].keys()), list(col_widths.values())) | |
table += _second_table_line(list(col_widths.values())) | |
for line in lines: | |
table += _regular_table_line([_maybe_round(v) for v in line.values()], list(col_widths.values())) | |
return table | |
_TRAINING_ARGS_KEYS = [ | |
"learning_rate", | |
"train_batch_size", | |
"eval_batch_size", | |
"seed", | |
] | |
def extract_hyperparameters_from_trainer(trainer): | |
hyperparameters = {k: getattr(trainer.args, k) for k in _TRAINING_ARGS_KEYS} | |
if trainer.args.parallel_mode not in [ParallelMode.NOT_PARALLEL, ParallelMode.NOT_DISTRIBUTED]: | |
hyperparameters["distributed_type"] = ( | |
"multi-GPU" if trainer.args.parallel_mode == ParallelMode.DISTRIBUTED else trainer.args.parallel_mode.value | |
) | |
if trainer.args.world_size > 1: | |
hyperparameters["num_devices"] = trainer.args.world_size | |
if trainer.args.gradient_accumulation_steps > 1: | |
hyperparameters["gradient_accumulation_steps"] = trainer.args.gradient_accumulation_steps | |
total_train_batch_size = ( | |
trainer.args.train_batch_size * trainer.args.world_size * trainer.args.gradient_accumulation_steps | |
) | |
if total_train_batch_size != hyperparameters["train_batch_size"]: | |
hyperparameters["total_train_batch_size"] = total_train_batch_size | |
total_eval_batch_size = trainer.args.eval_batch_size * trainer.args.world_size | |
if total_eval_batch_size != hyperparameters["eval_batch_size"]: | |
hyperparameters["total_eval_batch_size"] = total_eval_batch_size | |
if trainer.args.adafactor: | |
hyperparameters["optimizer"] = "Adafactor" | |
else: | |
hyperparameters["optimizer"] = ( | |
f"Adam with betas=({trainer.args.adam_beta1},{trainer.args.adam_beta2}) and" | |
f" epsilon={trainer.args.adam_epsilon}" | |
) | |
hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value | |
if trainer.args.warmup_ratio != 0.0: | |
hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio | |
if trainer.args.warmup_steps != 0.0: | |
hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps | |
if trainer.args.max_steps != -1: | |
hyperparameters["training_steps"] = trainer.args.max_steps | |
else: | |
hyperparameters["num_epochs"] = trainer.args.num_train_epochs | |
if trainer.args.fp16: | |
if trainer.use_apex: | |
hyperparameters["mixed_precision_training"] = f"Apex, opt level {trainer.args.fp16_opt_level}" | |
else: | |
hyperparameters["mixed_precision_training"] = "Native AMP" | |
if trainer.args.label_smoothing_factor != 0.0: | |
hyperparameters["label_smoothing_factor"] = trainer.args.label_smoothing_factor | |
return hyperparameters | |