# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AwqConfig, OPTForCausalLM from transformers.testing_utils import ( require_accelerate, require_auto_awq, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) from transformers.utils import is_accelerate_available, is_torch_available if is_torch_available(): import torch if is_accelerate_available(): from accelerate import init_empty_weights @require_torch_gpu class AwqConfigTest(unittest.TestCase): def test_wrong_backend(self): """ Simple test that checks if a user passes a wrong backend an error is raised """ # This should work fine _ = AwqConfig(bits=4) with self.assertRaises(ValueError): AwqConfig(bits=4, backend="") # These should work fine _ = AwqConfig(bits=4, version="GEMM") _ = AwqConfig(bits=4, version="gemm") with self.assertRaises(ValueError): AwqConfig(bits=4, backend="unexisting-backend") compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 8: # LLMAWQ does not work on a T4 with self.assertRaises(ValueError): AwqConfig(bits=4, backend="llm-awq") else: # LLMAWQ should work on an A100 AwqConfig(bits=4, backend="llm-awq") def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = AwqConfig(bits=4) config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key]) def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = {"bits": 2, "zero_point": False, "backend": "autoawq"} quantization_config = AwqConfig.from_dict(dict) self.assertEqual(dict["bits"], quantization_config.bits) self.assertEqual(dict["zero_point"], quantization_config.zero_point) self.assertEqual(dict["backend"], quantization_config.backend) @slow @require_torch_gpu @require_auto_awq @require_accelerate class AwqTest(unittest.TestCase): model_name = "TheBloke/Mistral-7B-v0.1-AWQ" dummy_transformers_model_name = "bigscience/bloom-560m" model_with_no_k_proj_quantized = "hf-internal-testing/opt-125m-awq-no-k-proj" input_text = "Hello my name is" EXPECTED_OUTPUT = "Hello my name is Katie and I am a 20 year old student at the University of North Carolina at Chapel Hill. I am a junior and I am majoring in Journalism and minoring in Spanish" EXPECTED_OUTPUT_BF16 = "Hello my name is Katie and I am a 20 year old student at the University of North Carolina at Chapel Hill. I am a junior and I am majoring in Exercise and Sport Science with a" EXPECTED_OUTPUT_EXLLAMA = [ "Hello my name is Katie and I am a 20 year old student from the UK. I am currently studying for a degree in English Literature and History at the University of York. I am a very out", "Hello my name is Katie and I am a 20 year old student from the UK. I am currently studying for a degree in English Literature and History at the University of York. I am a very creative", ] device_map = "cuda" # called only once for all test in this class @classmethod def setUpClass(cls): """ Setup quantized model """ cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.quantized_model = AutoModelForCausalLM.from_pretrained(cls.model_name, device_map=cls.device_map) def tearDown(self): gc.collect() torch.cuda.empty_cache() gc.collect() def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV from transformers.integrations.awq import replace_with_awq_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") quantization_config = AwqConfig(bits=4) with init_empty_weights(): model = OPTForCausalLM(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model, _ = replace_with_awq_linear(model, quantization_config=quantization_config) nb_awq_linear = 0 for module in model.modules(): if isinstance(module, (WQLinear_GEMM, WQLinear_GEMV)): nb_awq_linear += 1 self.assertEqual(nb_linears, nb_awq_linear) # Try with `modules_not_to_convert` with init_empty_weights(): model = OPTForCausalLM(config) model, _ = replace_with_awq_linear( model, quantization_config=quantization_config, modules_to_not_convert=["lm_head"] ) nb_awq_linear = 0 for module in model.modules(): if isinstance(module, (WQLinear_GEMM, WQLinear_GEMV)): nb_awq_linear += 1 self.assertEqual(nb_linears - 1, nb_awq_linear) def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=40) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_raise_if_non_quantized(self): model_id = "facebook/opt-125m" quantization_config = AwqConfig(bits=4) with self.assertRaises(ValueError): _ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) def test_quantized_model_bf16(self): """ Simple test that checks if the quantized model is working properly with bf16 """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, torch_dtype=torch.bfloat16).to( torch_device ) output = quantized_model.generate(**input_ids, max_new_tokens=40) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT_BF16) def test_quantized_model_exllama(self): """ Simple test that checks if the quantized model is working properly with exllama backend """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantization_config = AwqConfig(version="exllama") quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=quantization_config, device_map=torch_device ) output = quantized_model.generate(**input_ids, max_new_tokens=40) self.assertIn(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT_EXLLAMA) def test_quantized_model_no_device_map(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name).to(torch_device) output = quantized_model.generate(**input_ids, max_new_tokens=40) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=40) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) @require_torch_multi_gpu def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto") self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=40) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_quantized_model_no_k_proj_quantized(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs """ dummy_input = torch.LongTensor([[0, 1, 0]]).to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_with_no_k_proj_quantized).to(torch_device) self.assertTrue(isinstance(quantized_model.model.decoder.layers[0].self_attn.k_proj, torch.nn.Linear)) self.assertFalse(isinstance(quantized_model.model.decoder.layers[0].self_attn.v_proj, torch.nn.Linear)) EXPECTED_OUTPUT = torch.LongTensor([[0, 1, 0, 50118, 50118, 133, 248, 12, 134, 16, 10, 372, 2031]]).to( torch_device ) output = quantized_model.generate(dummy_input, max_new_tokens=10) self.assertTrue((EXPECTED_OUTPUT == output).all()) @slow @require_torch_gpu @require_auto_awq @require_accelerate class AwqFusedTest(unittest.TestCase): model_name = "TheBloke/Mistral-7B-OpenOrca-AWQ" model_revision = "7048b2af77d0dd1c81b000b19d73f9cc8950b510" custom_mapping_model_id = "TheBloke/Mistral-7B-v0.1-AWQ" custom_model_revision = "f186bcfa9edbe2a4334262ec1e67f23e53ed1ae7" mixtral_model_name = "casperhansen/mixtral-instruct-awq" mixtral_model_revision = "87dd4ec502dde74fb3a624835c776b000d190c3b" multi_modal_model_name = "ybelkada/llava-1.5-7b-hf-awq" multi_modal_model_code_revision = "ad108a50f5b9e681bdd7378409f57b7fa59a7442" prompt = ( "You're standing on the surface of the Earth. " "You walk one mile south, one mile west and one mile north. " "You end up exactly where you started. Where are you?" ) EXPECTED_GENERATION = prompt + "\n\nYou are at the starting point.\n\nIf" EXPECTED_GENERATION_CUSTOM_MODEL = "Hello,\n\nI have a problem with my 20" EXPECTED_GENERATION_MIXTRAL = prompt + " You're on the North Pole.\n\nThe" def tearDown(self): gc.collect() torch.cuda.empty_cache() gc.collect() def _check_fused_modules(self, model): has_fused_modules = False fused_modules_name = ["QuantAttentionFused", "QuantFusedMLP", "FasterTransformerRMSNorm"] for _, module in model.named_modules(): if module.__class__.__name__ in fused_modules_name: has_fused_modules = True break self.assertTrue(has_fused_modules, "Modules fusing not performed correctly!") def test_raise_save_pretrained(self): """ Test that `save_pretrained` is effectively blocked for fused models """ quantization_config = AwqConfig(bits=4, fuse_max_seq_len=128, do_fuse=True) model = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=quantization_config, low_cpu_mem_usage=True, revision=self.model_revision, ).to(torch_device) self._check_fused_modules(model) with self.assertRaises(ValueError), tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) def test_fused_modules_to_not_convert(self): """ Test if fused + modules to_not_covnert work as expected """ model_id = "hf-internal-testing/Mixtral-tiny-AWQ" quantization_config = AwqConfig(bits=4, fuse_max_seq_len=128, do_fuse=True) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=quantization_config, low_cpu_mem_usage=True, ).to(torch_device) # Check if model has been correctly fused self._check_fused_modules(model) # Checks if the modules_to_not_convert (here gate layer) is a Linear self.assertTrue(isinstance(model.model.layers[0].block_sparse_moe.gate, torch.nn.Linear)) def test_generation_fused(self): """ Test generation quality for fused models - single batch case """ quantization_config = AwqConfig(bits=4, fuse_max_seq_len=128, do_fuse=True) model = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=quantization_config, low_cpu_mem_usage=True, revision=self.model_revision, ).to(torch_device) self._check_fused_modules(model) tokenizer = AutoTokenizer.from_pretrained(self.model_name, revision=self.model_revision) inputs = tokenizer(self.prompt, return_tensors="pt").to(torch_device) outputs = model.generate(**inputs, max_new_tokens=12) self.assertEqual(tokenizer.decode(outputs[0], skip_special_tokens=True), self.EXPECTED_GENERATION) def test_generation_fused_batched(self): """ Test generation quality for fused models - multi batch case """ quantization_config = AwqConfig(bits=4, fuse_max_seq_len=128, do_fuse=True) model = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=quantization_config, low_cpu_mem_usage=True, revision=self.model_revision, ).to(torch_device) self._check_fused_modules(model) tokenizer = AutoTokenizer.from_pretrained(self.model_name, revision=self.model_revision) tokenizer.pad_token_id = tokenizer.eos_token_id inputs = tokenizer([self.prompt, self.prompt], return_tensors="pt", padding=True).to(torch_device) outputs = model.generate(**inputs, max_new_tokens=12) self.assertEqual(tokenizer.decode(outputs[0], skip_special_tokens=True), self.EXPECTED_GENERATION) def test_generation_llava_fused(self): from transformers import pipeline quantization_config = AwqConfig(do_fuse=True, fuse_max_seq_len=2048) pipe = pipeline( "image-to-text", model=self.multi_modal_model_name, device=0, model_kwargs={ "quantization_config": quantization_config, }, revision=self.multi_modal_model_code_revision, ) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png" prompt = "USER: \nCan you please describe this image?\nASSISTANT:" outputs = pipe(url, prompt=prompt, generate_kwargs={"max_new_tokens": 100}) EXPECTED_OUTPUT = "USER: \nCan you please describe this image?\nASSISTANT: The image features a brown and white cat sitting on a green surface, possibly a carpet or a grassy area. The cat is holding a red ball in its paws, seemingly playing with it. The cat appears to be focused on the ball, possibly preparing to play or just enjoying the toy." self.assertEqual(outputs[0]["generated_text"], EXPECTED_OUTPUT) @require_torch_multi_gpu def test_generation_custom_model(self): """ Test generation quality for fused models using custom fused map. """ quantization_config = AwqConfig( bits=4, fuse_max_seq_len=512, modules_to_fuse={ "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], "mlp": ["gate_proj", "up_proj", "down_proj"], "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], "use_alibi": False, "hidden_size": 4096, "num_attention_heads": 32, "num_key_value_heads": 8, }, ) model = AutoModelForCausalLM.from_pretrained( self.custom_mapping_model_id, quantization_config=quantization_config, device_map="balanced", revision=self.custom_model_revision, ) self._check_fused_modules(model) tokenizer = AutoTokenizer.from_pretrained(self.custom_mapping_model_id, revision=self.custom_model_revision) prompt = "Hello" inputs = tokenizer(prompt, return_tensors="pt").to(torch_device) outputs = model.generate(**inputs, max_new_tokens=12) self.assertEqual(tokenizer.decode(outputs[0], skip_special_tokens=True), self.EXPECTED_GENERATION_CUSTOM_MODEL) @unittest.skip("Not enough GPU memory on CI runners") @require_torch_multi_gpu def test_generation_mixtral_fused(self): """ Text generation test for Mixtral + AWQ + fused """ quantization_config = AwqConfig(bits=4, fuse_max_seq_len=1024, do_fuse=True) model = AutoModelForCausalLM.from_pretrained( self.mixtral_model_name, quantization_config=quantization_config, device_map="auto", revision=self.mixtral_model_revision, ) tokenizer = AutoTokenizer.from_pretrained(self.mixtral_model_name) tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer([self.prompt, self.prompt], return_tensors="pt", padding=True).to(torch_device) outputs = model.generate(**inputs, max_new_tokens=12) self.assertEqual(tokenizer.decode(outputs[0], skip_special_tokens=True), self.EXPECTED_GENERATION_MIXTRAL)