# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import functools import gc import importlib.metadata import inspect import itertools import json import os import re import shutil import tempfile import warnings from contextlib import contextmanager from dataclasses import dataclass from functools import partial, wraps from threading import Thread from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union from zipfile import is_zipfile import torch from packaging import version from torch import Tensor, nn from torch.nn import CrossEntropyLoss, Identity from torch.utils.checkpoint import checkpoint from .activations import get_activation from .configuration_utils import PretrainedConfig from .dynamic_module_utils import custom_object_save from .generation import GenerationConfig, GenerationMixin from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled from .pytorch_utils import ( # noqa: F401 Conv1D, apply_chunking_to_forward, find_pruneable_heads_and_indices, id_tensor_storage, is_torch_greater_or_equal_than_1_13, prune_conv1d_layer, prune_layer, prune_linear_layer, ) from .quantizers import AutoHfQuantizer, HfQuantizer from .quantizers.quantizers_utils import get_module_from_name from .safetensors_conversion import auto_conversion from .utils import ( ADAPTER_SAFE_WEIGHTS_NAME, ADAPTER_WEIGHTS_NAME, CONFIG_NAME, DUMMY_INPUTS, FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, ModelOutput, PushToHubMixin, cached_file, copy_func, download_url, extract_commit_hash, has_file, is_accelerate_available, is_bitsandbytes_available, is_flash_attn_2_available, is_offline_mode, is_optimum_available, is_peft_available, is_remote_url, is_safetensors_available, is_torch_sdpa_available, is_torch_xla_available, logging, replace_return_docstrings, strtobool, ) from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files from .utils.import_utils import ( ENV_VARS_TRUE_VALUES, is_sagemaker_mp_enabled, is_torch_fx_proxy, is_torchdynamo_compiling, ) from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper() XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper() if is_accelerate_available(): from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights from accelerate.hooks import add_hook_to_module from accelerate.utils import ( check_tied_parameters_on_same_device, extract_model_from_parallel, find_tied_parameters, get_balanced_memory, get_max_memory, load_offloaded_weights, offload_weight, save_offload_index, set_module_tensor_to_device, ) if is_safetensors_available(): from safetensors import safe_open from safetensors.torch import load_file as safe_load_file from safetensors.torch import save_file as safe_save_file logger = logging.get_logger(__name__) _init_weights = True def is_fsdp_enabled(): return ( torch.distributed.is_available() and torch.distributed.is_initialized() and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1 and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1 ) def is_local_dist_rank_0(): return ( torch.distributed.is_available() and torch.distributed.is_initialized() and int(os.environ.get("LOCAL_RANK", -1)) == 0 ) if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp from smdistributed.modelparallel import __version__ as SMP_VERSION IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10") else: IS_SAGEMAKER_MP_POST_1_10 = False if is_peft_available(): from .utils import find_adapter_config_file TORCH_INIT_FUNCTIONS = { "uniform_": nn.init.uniform_, "normal_": nn.init.normal_, "trunc_normal_": nn.init.trunc_normal_, "constant_": nn.init.constant_, "xavier_uniform_": nn.init.xavier_uniform_, "xavier_normal_": nn.init.xavier_normal_, "kaiming_uniform_": nn.init.kaiming_uniform_, "kaiming_normal_": nn.init.kaiming_normal_, "uniform": nn.init.uniform, "normal": nn.init.normal, "xavier_uniform": nn.init.xavier_uniform, "xavier_normal": nn.init.xavier_normal, "kaiming_uniform": nn.init.kaiming_uniform, "kaiming_normal": nn.init.kaiming_normal, } @contextmanager def no_init_weights(_enable=True): """ Context manager to globally disable weight initialization to speed up loading large models. TODO(Patrick): Delete safety argument `_enable=True` at next major version. . """ global _init_weights old_init_weights = _init_weights if _enable: _init_weights = False def _skip_init(*args, **kwargs): pass # # Save the original initialization functions for name, init_func in TORCH_INIT_FUNCTIONS.items(): setattr(torch.nn.init, name, _skip_init) try: yield finally: _init_weights = old_init_weights if _enable: # # Restore the original initialization functions for name, init_func in TORCH_INIT_FUNCTIONS.items(): setattr(torch.nn.init, name, init_func) def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): try: return next(parameter.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): """ Returns the first parameter dtype (can be non-floating) or asserts if none were found. """ try: return next(parameter.parameters()).dtype except StopIteration: # For nn.DataParallel compatibility in PyTorch > 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): """ Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found. """ last_dtype = None for t in parameter.parameters(): last_dtype = t.dtype if t.is_floating_point(): # Adding fix for https://github.com/pytorch/xla/issues/4152 # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1 # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf # NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available(): return torch.bfloat16 if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available(): if t.dtype == torch.float: return torch.bfloat16 if t.dtype == torch.double: return torch.float32 return t.dtype if last_dtype is not None: # if no floating dtype was found return whatever the first dtype is return last_dtype # For nn.DataParallel compatibility in PyTorch > 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) last_tuple = None for tuple in gen: last_tuple = tuple if tuple[1].is_floating_point(): return tuple[1].dtype if last_tuple is not None: # fallback to the last dtype return last_tuple[1].dtype # fallback to buffer dtype for t in parameter.buffers(): last_dtype = t.dtype if t.is_floating_point(): return t.dtype return last_dtype def get_state_dict_float_dtype(state_dict): """ Returns the first found floating dtype in `state_dict` or asserts if none were found. """ for t in state_dict.values(): if t.is_floating_point(): return t.dtype raise ValueError("couldn't find any floating point dtypes in state_dict") def get_state_dict_dtype(state_dict): """ Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype. """ for t in state_dict.values(): if t.is_floating_point(): return t.dtype # if no floating dtype was found return whatever the first dtype is else: return next(state_dict.values()).dtype def dtype_byte_size(dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(torch.float32) 4 ``` """ if dtype == torch.bool: return 1 / 8 bit_search = re.search(r"[^\d](\d+)$", str(dtype)) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def shard_checkpoint( state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME ): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. Args: state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`): The name of the model save file. """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [{}] last_block_size = 0 total_size = 0 storage_id_to_block = {} for key, weight in state_dict.items(): # when bnb serialization is used the weights in the state dict can be strings # check: https://github.com/huggingface/transformers/pull/24416 for more details if isinstance(weight, str): continue else: storage_id = id_tensor_storage(weight) # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block` if storage_id in storage_id_to_block: block_id = storage_id_to_block[storage_id] sharded_state_dicts[block_id][key] = weight continue weight_size = weight.numel() * dtype_byte_size(weight.dtype) # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one # weight in the current shard. if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0: sharded_state_dicts.append({}) last_block_size = 0 sharded_state_dicts[-1][key] = weight last_block_size += weight_size total_size += weight_size storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1 # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin") shard_file = shard_file.replace( ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors" ) shards[shard_file] = shard for key in shard.keys(): weight_map[key] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True): """ This is the same as [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict) but for a sharded checkpoint. This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being loaded in the model. Args: model (`torch.nn.Module`): The model in which to load the checkpoint. folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint. strict (`bool`, *optional`, defaults to `True`): Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint. prefer_safe (`bool`, *optional*, defaults to `False`) If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible. Returns: `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields - `missing_keys` is a list of str containing the missing keys - `unexpected_keys` is a list of str containing the unexpected keys """ # Load the index index_file = os.path.join(folder, WEIGHTS_INDEX_NAME) safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME) index_present = os.path.isfile(index_file) safe_index_present = os.path.isfile(safe_index_file) if not index_present and not (safe_index_present and is_safetensors_available()): filenames = ( (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,) ) raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.") load_safe = False if safe_index_present: if prefer_safe: if is_safetensors_available(): load_safe = True # load safe due to preference else: logger.warning( f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!" ) elif not index_present: load_safe = True # load safe since we have no other choice load_index = safe_index_file if load_safe else index_file with open(load_index, "r", encoding="utf-8") as f: index = json.load(f) shard_files = list(set(index["weight_map"].values())) # If strict=True, error before loading any of the state dicts. loaded_keys = index["weight_map"].keys() model_keys = model.state_dict().keys() missing_keys = [key for key in model_keys if key not in loaded_keys] unexpected_keys = [key for key in loaded_keys if key not in model_keys] if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0): error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}" if len(missing_keys) > 0: str_missing_keys = ",".join([f'"{k}"' for k in missing_keys]) error_message += f"\nMissing key(s): {str_missing_keys}." if len(unexpected_keys) > 0: str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys]) error_message += f"\nMissing key(s): {str_unexpected_keys}." raise RuntimeError(error_message) weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg) for shard_file in shard_files: state_dict = loader(os.path.join(folder, shard_file)) model.load_state_dict(state_dict, strict=False) # Make sure memory is freed before we load the next state dict. del state_dict gc.collect() # Return the same thing as PyTorch load_state_dict function. return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys) def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False): """ Reads a PyTorch checkpoint file, returning properly formatted errors if they arise. """ if checkpoint_file.endswith(".safetensors") and is_safetensors_available(): # Check format of the archive with safe_open(checkpoint_file, framework="pt") as f: metadata = f.metadata() if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]: raise OSError( f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure " "you save your model with the `save_pretrained` method." ) return safe_load_file(checkpoint_file) try: if ( (is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0) or (is_fsdp_enabled() and not is_local_dist_rank_0()) ) and not is_quantized: map_location = "meta" else: map_location = "cpu" extra_args = {} # mmap can only be used with files serialized with zipfile-based format. if ( isinstance(checkpoint_file, str) and map_location != "meta" and version.parse(torch.__version__) >= version.parse("2.1.0") and is_zipfile(checkpoint_file) ): extra_args = {"mmap": True} weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} return torch.load( checkpoint_file, map_location=map_location, **weights_only_kwarg, **extra_args, ) except Exception as e: try: with open(checkpoint_file) as f: if f.read(7) == "version": raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please install " "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " "you cloned." ) else: raise ValueError( f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained " "model. Make sure you have saved the model properly." ) from e except (UnicodeDecodeError, ValueError): raise OSError( f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True." ) def set_initialized_submodules(model, state_dict_keys): """ Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state dict. """ not_initialized_submodules = {} for module_name, module in model.named_modules(): loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")} if loaded_keys.issuperset(module.state_dict()): module._is_hf_initialized = True else: not_initialized_submodules[module_name] = module return not_initialized_submodules def _end_ptr(tensor: torch.Tensor) -> int: # extract the end of the pointer if the tensor is a slice of a bigger tensor if tensor.nelement(): stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size() else: stop = tensor.data_ptr() return stop def _get_tied_weight_keys(module: nn.Module, prefix=""): tied_weight_keys = [] if getattr(module, "_tied_weights_keys", None) is not None: names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys] tied_weight_keys.extend(names) if getattr(module, "_dynamic_tied_weights_keys", None) is not None: names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys] tied_weight_keys.extend(names) for name, submodule in module.named_children(): local_prefix = f"{prefix}.{name}" if prefix else name tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix)) return tied_weight_keys def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]: filtered_tensors = [] for shared in tensors: if len(shared) < 2: filtered_tensors.append(shared) continue areas = [] for name in shared: tensor = state_dict[name] areas.append((tensor.data_ptr(), _end_ptr(tensor), name)) areas.sort() _, last_stop, last_name = areas[0] filtered_tensors.append({last_name}) for start, stop, name in areas[1:]: if start >= last_stop: filtered_tensors.append({name}) else: filtered_tensors[-1].add(name) last_stop = stop disjoint_tensors = [] shared_tensors = [] for tensors in filtered_tensors: if len(tensors) == 1: disjoint_tensors.append(tensors.pop()) else: shared_tensors.append(tensors) return shared_tensors, disjoint_tensors def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]: shared_tensors = [] identical = [] for shared in tensors: if len(shared) < 2: continue areas = collections.defaultdict(set) for name in shared: tensor = state_dict[name] area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor)) areas[area].add(name) if len(areas) == 1: identical.append(shared) else: shared_tensors.append(shared) return shared_tensors, identical def _load_state_dict_into_model(model_to_load, state_dict, start_prefix): # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata error_msgs = [] # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, state_dict, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) # Parameters of module and children will start with prefix. We can exit early if there are none in this # state_dict if len([key for key in state_dict if key.startswith(prefix)]) > 0: if is_deepspeed_zero3_enabled(): import deepspeed # In sharded models, each shard has only part of the full state_dict, so only gather # parameters that are in the current state_dict. named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] if len(params_to_gather) > 0: # because zero3 puts placeholders in model params, this context # manager gathers (unpartitions) the params of the current layer, then loads from # the state dict and then re-partitions them again with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): if torch.distributed.get_rank() == 0: module._load_from_state_dict(*args) else: module._load_from_state_dict(*args) for name, child in module._modules.items(): if child is not None: load(child, state_dict, prefix + name + ".") load(model_to_load, state_dict, prefix=start_prefix) # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so # it's safe to delete it. del state_dict return error_msgs def find_submodule_and_param_name(model, long_key, start_prefix): """ A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed from the start of the key """ if len(start_prefix) > 0 and long_key.startswith(start_prefix): long_key = ".".join(long_key.split(".")[1:]) split_key = long_key.split(".") submodule = model while len(split_key) > 1: if hasattr(submodule, split_key[0]): submodule = getattr(submodule, split_key[0]) del split_key[0] else: submodule = None break if submodule == model: submodule = None return submodule, split_key[0] def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix): """ Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params. `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in `bert.pooler.dense.weight` """ # dematerialize param storage for keys that are going to be replaced by state_dict, by # putting those on the meta device for k in loaded_state_dict_keys: submodule, param_name = find_submodule_and_param_name(model, k, start_prefix) if submodule is not None: # selectively switch to the meta device only those params/buffers that will # be next replaced from state_dict. This a complex way to do p.to_("meta") # since we have no in-place to_ for tensors. new_val = getattr(submodule, param_name) if isinstance(new_val, torch.nn.Parameter): # isinstance returns False for Params on meta device, so switch after the check new_val = torch.nn.Parameter(new_val.to("meta")) else: new_val = new_val.to("meta") setattr(submodule, param_name, new_val) def _load_state_dict_into_meta_model( model, state_dict, loaded_state_dict_keys, # left for now but could be removed, see below start_prefix, expected_keys, device_map=None, offload_folder=None, offload_index=None, state_dict_folder=None, state_dict_index=None, dtype=None, hf_quantizer=None, is_safetensors=False, keep_in_fp32_modules=None, unexpected_keys=None, # passing `unexpected` for cleanup from quantization items ): """ This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the params back to the normal device, but only for `loaded_state_dict_keys`. `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in `bert.pooler.dense.weight` """ # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model # - deepspeed zero 3 support # - need to copy metadata if any - see _load_state_dict_into_model # - handling error_msgs - mimicking the error handling in module._load_from_state_dict() # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case # they won't get loaded. error_msgs = [] old_keys = [] new_keys = [] is_quantized = hf_quantizer is not None for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) for param_name, param in state_dict.items(): # First part of the test is always true as load_state_dict_keys always contains state_dict keys. if param_name not in loaded_state_dict_keys or param_name not in expected_keys: continue if param_name.startswith(start_prefix): param_name = param_name[len(start_prefix) :] module_name = param_name set_module_kwargs = {} # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params # in int/uint/bool and not cast them. if dtype is not None and torch.is_floating_point(param): if ( keep_in_fp32_modules is not None and any( module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules ) and dtype == torch.float16 ): param = param.to(torch.float32) # For backward compatibility with older versions of `accelerate` # TODO: @sgugger replace this check with version check at the next `accelerate` release if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters): set_module_kwargs["dtype"] = torch.float32 else: param = param.to(dtype) # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model. # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29 old_param = model splits = param_name.split(".") for split in splits: old_param = getattr(old_param, split) if old_param is None: break if old_param is not None: if dtype is None: param = param.to(old_param.dtype) if old_param.is_contiguous(): param = param.contiguous() set_module_kwargs["value"] = param if device_map is None: param_device = "cpu" else: # find next higher level module that is defined in device_map: # bert.lm_head.weight -> bert.lm_head -> bert -> '' while len(module_name) > 0 and module_name not in device_map: module_name = ".".join(module_name.split(".")[:-1]) if module_name == "" and "" not in device_map: # TODO: group all errors and raise at the end. raise ValueError(f"{param_name} doesn't have any device set.") param_device = device_map[module_name] if param_device == "disk": if not is_safetensors: offload_index = offload_weight(param, param_name, offload_folder, offload_index) elif param_device == "cpu" and state_dict_index is not None: state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index) elif ( not is_quantized or (not hf_quantizer.requires_parameters_quantization) or ( not hf_quantizer.check_quantized_param( model, param, param_name, state_dict, param_device=param_device, device_map=device_map ) ) ): # For backward compatibility with older versions of `accelerate` and for non-quantized params set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs) else: hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys) # For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU # and then cast it to CPU to avoid excessive memory usage on each GPU # in comparison to the sharded model across GPUs. if is_fsdp_enabled() or is_deepspeed_zero3_enabled(): module, tensor_name = get_module_from_name(model, param_name) value = getattr(module, tensor_name) value = type(value)(value.data.to("cpu"), **value.__dict__) setattr(module, tensor_name, value) # TODO: consider removing used param_parts from state_dict before return return error_msgs, offload_index, state_dict_index def _add_variant(weights_name: str, variant: Optional[str] = None) -> str: if variant is not None: splits = weights_name.split(".") splits = splits[:-1] + [variant] + splits[-1:] weights_name = ".".join(splits) return weights_name class ModuleUtilsMixin: """ A few utilities for `torch.nn.Modules`, to be used as a mixin. """ @staticmethod def _hook_rss_memory_pre_forward(module, *args, **kwargs): try: import psutil except ImportError: raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_pre_forward = mem.rss return None @staticmethod def _hook_rss_memory_post_forward(module, *args, **kwargs): try: import psutil except ImportError: raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_post_forward = mem.rss mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) return None def add_memory_hooks(self): """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero with `model.reset_memory_hooks_state()`. """ for module in self.modules(): module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) module.register_forward_hook(self._hook_rss_memory_post_forward) self.reset_memory_hooks_state() def reset_memory_hooks_state(self): """ Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]). """ for module in self.modules(): module.mem_rss_diff = 0 module.mem_rss_post_forward = 0 module.mem_rss_pre_forward = 0 @property def device(self) -> torch.device: """ `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ return get_parameter_device(self) @property def dtype(self) -> torch.dtype: """ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ return get_parameter_dtype(self) def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: """ Invert an attention mask (e.g., switches 0. and 1.). Args: encoder_attention_mask (`torch.Tensor`): An attention mask. Returns: `torch.Tensor`: The inverted attention mask. """ if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min return encoder_extended_attention_mask @staticmethod def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None): if device is not None: warnings.warn( "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) else: device = attention_mask.device batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] return extended_attention_mask def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ if dtype is None: dtype = self.dtype if not (attention_mask.dim() == 2 and self.config.is_decoder): # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder` if device is not None: warnings.warn( "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( input_shape, attention_mask, device ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min return extended_attention_mask def get_head_mask( self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False ) -> Tensor: """ Prepare the head mask if needed. Args: head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). num_hidden_layers (`int`): The number of hidden layers in the model. is_attention_chunked (`bool`, *optional*, defaults to `False`): Whether or not the attentions scores are computed by chunks or not. Returns: `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with `[None]` for each layer. """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) if is_attention_chunked is True: head_mask = head_mask.unsqueeze(-1) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility return head_mask def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: """ Get number of (optionally, trainable or non-embeddings) parameters in the module. Args: only_trainable (`bool`, *optional*, defaults to `False`): Whether or not to return only the number of trainable parameters exclude_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to return only the number of non-embeddings parameters Returns: `int`: The number of parameters. """ if exclude_embeddings: embedding_param_names = [ f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding) ] total_parameters = [ parameter for name, parameter in self.named_parameters() if name not in embedding_param_names ] else: total_parameters = list(self.parameters()) total_numel = [] is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False) if is_loaded_in_4bit: if is_bitsandbytes_available(): import bitsandbytes as bnb else: raise ValueError( "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong" " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. " ) for param in total_parameters: if param.requires_grad or not only_trainable: # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are # used for the 4bit quantization (uint8 tensors are stored) if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit): if hasattr(param, "element_size"): num_bytes = param.element_size() elif hasattr(param, "quant_storage"): num_bytes = param.quant_storage.itemsize else: num_bytes = 1 total_numel.append(param.numel() * 2 * num_bytes) else: total_numel.append(param.numel()) return sum(total_numel) def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: """ Helper function to estimate the total number of tokens from the model inputs. Args: inputs (`dict`): The model inputs. Returns: `int`: The total number of tokens. """ if not hasattr(self, "warnings_issued"): self.warnings_issued = {} if self.main_input_name in input_dict: return input_dict[self.main_input_name].numel() elif "estimate_tokens" not in self.warnings_issued: logger.warning( "Could not estimate the number of tokens of the input, floating-point operations will not be computed" ) self.warnings_issued["estimate_tokens"] = True return 0 def floating_point_ops( self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True ) -> int: """ Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a batch with this transformer model. Default approximation neglects the quadratic dependency on the number of tokens (valid if `12 * d_model << sequence_length`) as laid out in [this paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. Args: batch_size (`int`): The batch size for the forward pass. sequence_length (`int`): The number of tokens in each line of the batch. exclude_embeddings (`bool`, *optional*, defaults to `True`): Whether or not to count embedding and softmax operations. Returns: `int`: The number of floating-point operations. """ return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin): r""" Base class for all models. [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, downloading and saving models as well as a few methods common to all models to: - resize the input embeddings, - prune heads in the self-attention heads. Class attributes (overridden by derived classes): - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class for this model architecture. - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint. - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model. - **path** (`str`) -- A path to the TensorFlow checkpoint. - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization. - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP models, `pixel_values` for vision models and `input_values` for speech models). """ config_class = None base_model_prefix = "" main_input_name = "input_ids" model_tags = None _auto_class = None _no_split_modules = None _skip_keys_device_placement = None _keep_in_fp32_modules = None # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings. _keys_to_ignore_on_load_missing = None # a list of `re` patterns of `state_dict` keys that should be removed from the list of # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary # warnings. _keys_to_ignore_on_load_unexpected = None # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't # trained, but which are either deterministic or tied variables) _keys_to_ignore_on_save = None # a list of `state_dict` keys that are potentially tied to another key in the state_dict. _tied_weights_keys = None is_parallelizable = False supports_gradient_checkpointing = False # Flash Attention 2 support _supports_flash_attn_2 = False # SDPA support _supports_sdpa = False # Has support for a `Cache` instance as `past_key_values` _supports_cache_class = False @property def dummy_inputs(self) -> Dict[str, torch.Tensor]: """ `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} @property def framework(self) -> str: """ :str: Identifies that this is a PyTorch model. """ return "pt" def __init__(self, config: PretrainedConfig, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " "`PretrainedConfig`. To create a model from a pretrained model use " f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" ) # Save config and origin of the pretrained weights if given in model config = self._autoset_attn_implementation( config, torch_dtype=torch.get_default_dtype(), check_device_map=False ) self.config = config self.name_or_path = config.name_or_path self.warnings_issued = {} self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None # Overwrite the class attribute to make it an instance attribute, so models like # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute # when a different component (e.g. language_model) is used. self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules) def post_init(self): """ A method executed at the end of each Transformer model initialization, to execute code that needs the model's modules properly initialized (such as weight initialization). """ self.init_weights() self._backward_compatibility_gradient_checkpointing() def _backward_compatibility_gradient_checkpointing(self): if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False): self.gradient_checkpointing_enable() # Remove the attribute now that is has been consumed, so it's no saved in the config. delattr(self.config, "gradient_checkpointing") def add_model_tags(self, tags: Union[List[str], str]) -> None: r""" Add custom tags into the model that gets pushed to the Hugging Face Hub. Will not overwrite existing tags in the model. Args: tags (`Union[List[str], str]`): The desired tags to inject in the model Examples: ```python from transformers import AutoModel model = AutoModel.from_pretrained("google-bert/bert-base-cased") model.add_model_tags(["custom", "custom-bert"]) # Push the model to your namespace with the name "my-custom-bert". model.push_to_hub("my-custom-bert") ``` """ if isinstance(tags, str): tags = [tags] if self.model_tags is None: self.model_tags = [] for tag in tags: if tag not in self.model_tags: self.model_tags.append(tag) @classmethod def _from_config(cls, config, **kwargs): """ All context managers that the model should be initialized under go here. Args: torch_dtype (`torch.dtype`, *optional*): Override the default `torch.dtype` and load the model under this dtype. """ torch_dtype = kwargs.pop("torch_dtype", None) use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False) # override default dtype if needed dtype_orig = None if torch_dtype is not None: dtype_orig = cls._set_default_torch_dtype(torch_dtype) config = copy.deepcopy(config) # We do not want to modify the config inplace in _from_config. config._attn_implementation = kwargs.pop("attn_implementation", None) config = cls._autoset_attn_implementation( config, use_flash_attention_2=use_flash_attention_2, check_device_map=False, torch_dtype=torch_dtype, ) if is_deepspeed_zero3_enabled(): import deepspeed logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") # this immediately partitions the model across all gpus, to avoid the overhead in time # and memory copying it on CPU or each GPU first with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()): model = cls(config, **kwargs) else: model = cls(config, **kwargs) # restore default dtype if it was modified if dtype_orig is not None: torch.set_default_dtype(dtype_orig) return model @classmethod def _autoset_attn_implementation( cls, config, use_flash_attention_2: bool = False, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None, check_device_map: bool = True, ): """ Automatically checks and dispatches to a default attention implementation. In order of priority: 1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained). 2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example) 3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example) 4. The default model's implementation otherwise (`LlamaAttention` for example) . """ # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user. # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager"). # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model) requested_attn_implementation = None if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None: if config._attn_implementation != "flash_attention_2" and use_flash_attention_2: raise ValueError( f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.' ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.' ) if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]: message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)' if cls._supports_flash_attn_2: message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)' if cls._supports_sdpa: message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)' raise ValueError(message + ".") # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available. requested_attn_implementation = config._attn_implementation_internal if use_flash_attention_2: logger.warning_once( 'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.' ) config._attn_implementation = "flash_attention_2" if config._attn_implementation == "flash_attention_2": cls._check_and_enable_flash_attn_2( config, torch_dtype=torch_dtype, device_map=device_map, hard_check_only=False, check_device_map=check_device_map, ) elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available(): # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif. config = cls._check_and_enable_sdpa( config, hard_check_only=False if requested_attn_implementation is None else True, ) else: config._attn_implementation = "eager" return config @classmethod def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype: """ Change the default dtype and return the previous one. This is needed when wanting to instantiate the model under specific dtype. Args: dtype (`torch.dtype`): a floating dtype to set to. Returns: `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was modified. If it wasn't, returns `None`. Note `set_default_dtype` currently only works with floating-point types and asserts if for example, `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception. """ if not dtype.is_floating_point: raise ValueError( f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype" ) logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.") dtype_orig = torch.get_default_dtype() torch.set_default_dtype(dtype) return dtype_orig @property def base_model(self) -> nn.Module: """ `torch.nn.Module`: The main body of the model. """ return getattr(self, self.base_model_prefix, self) @classmethod def can_generate(cls) -> bool: """ Returns whether this model can generate sequences with `.generate()`. Returns: `bool`: Whether this model can generate sequences with `.generate()`. """ # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation. # Alternativelly, the model can also have a custom `generate` function. if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate): return False return True @classmethod def _check_and_enable_flash_attn_2( cls, config, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None, check_device_map: bool = True, hard_check_only: bool = False, ) -> PretrainedConfig: """ Checks the availability of Flash Attention 2 and compatibility with the current model. If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module. """ if not cls._supports_flash_attn_2: raise ValueError( f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where" f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new" " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new" ) if not is_flash_attn_2_available(): preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:" install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2." if importlib.util.find_spec("flash_attn") is None: raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}") flash_attention_version = version.parse(importlib.metadata.version("flash_attn")) if torch.version.cuda: if flash_attention_version < version.parse("2.1.0"): raise ImportError( f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}" ) else: raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}") elif torch.version.hip: if flash_attention_version < version.parse("2.0.4"): raise ImportError( f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}" ) else: raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}") _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: raise ValueError( "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()" ) if torch_dtype is None: logger.warning_once( "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour" ) elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]: logger.warning_once( "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but" f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator," ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`' ) # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called, # or the model may be initialized under the context manager `with torch.device("cuda"):`. if check_device_map and device_map is None and torch.empty(0).device.type != "cuda": if torch.cuda.is_available(): logger.warning_once( "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU" " after initializing it on CPU with `model.to('cuda')`." ) else: raise ValueError( "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. " "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map " "or initialising the model on CPU and then moving it to GPU." ) elif ( check_device_map and device_map is not None and isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()) ): raise ValueError( "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to " "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys." ) if not hard_check_only: config._attn_implementation = "flash_attention_2" return config @classmethod def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig: """ Checks the availability of SDPA for a given model. If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module. """ if hard_check_only: if not cls._supports_sdpa: raise ValueError( f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet." " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe" ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`' ) if not is_torch_sdpa_available(): raise ImportError( "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1." ) if not is_torch_sdpa_available() or not cls._supports_sdpa: return config _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: return config if not hard_check_only: config._attn_implementation = "sdpa" return config def enable_input_require_grads(self): """ Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping the model weights fixed. """ def make_inputs_require_grads(module, input, output): output.requires_grad_(True) self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) def disable_input_require_grads(self): """ Removes the `_require_grads_hook`. """ self._require_grads_hook.remove() def get_input_embeddings(self) -> nn.Module: """ Returns the model's input embeddings. Returns: `nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def set_input_embeddings(self, value: nn.Module): """ Set model's input embeddings. Args: value (`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError def get_output_embeddings(self) -> nn.Module: """ Returns the model's output embeddings. Returns: `nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def _init_weights(self, module): """ Initialize the weights. This method should be overridden by derived class and is the only initialization method that will be called when loading a checkpoint using `from_pretrained`. Any attempt to initialize outside of this function will be useless as the torch.nn.init function are all replaced with skip. """ pass def _initialize_weights(self, module): """ Initialize the weights if they are not already initialized. """ if getattr(module, "_is_hf_initialized", False): return self._init_weights(module) module._is_hf_initialized = True def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ if getattr(self.config, "tie_word_embeddings", True): output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False): if hasattr(self, self.base_model_prefix): self = getattr(self, self.base_model_prefix) tied_weights = self._tie_encoder_decoder_weights( self.encoder, self.decoder, self.base_model_prefix, "encoder" ) # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class # attributed not an instance member, therefore modifying it will modify the entire class # Leading to issues on subsequent calls by different tests or subsequent calls. self._dynamic_tied_weights_keys = tied_weights for module in self.modules(): if hasattr(module, "_tie_weights"): module._tie_weights() @staticmethod def _tie_encoder_decoder_weights( encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str ): uninitialized_encoder_weights: List[str] = [] tied_weights: List[str] = [] if decoder.__class__ != encoder.__class__: logger.info( f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder" " weights are correctly initialized." ) def tie_encoder_to_decoder_recursively( decoder_pointer: nn.Module, encoder_pointer: nn.Module, module_name: str, base_encoder_name: str, uninitialized_encoder_weights: List[str], depth=0, total_decoder_name="", total_encoder_name="", ): assert isinstance(decoder_pointer, nn.Module) and isinstance( encoder_pointer, nn.Module ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module" if hasattr(decoder_pointer, "weight"): assert hasattr(encoder_pointer, "weight") encoder_pointer.weight = decoder_pointer.weight tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight") if hasattr(decoder_pointer, "bias"): assert hasattr(encoder_pointer, "bias") tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias") encoder_pointer.bias = decoder_pointer.bias return encoder_modules = encoder_pointer._modules decoder_modules = decoder_pointer._modules if len(decoder_modules) > 0: assert ( len(encoder_modules) > 0 ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()} encoder_layer_pos = 0 for name, module in decoder_modules.items(): if name.isdigit(): encoder_name = str(int(name) + encoder_layer_pos) decoder_name = name if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( encoder_modules ) != len(decoder_modules): # this can happen if the name corresponds to the position in a list module list of layers # in this case the decoder has added a cross-attention that the encoder does not have # thus skip this step and subtract one layer pos from encoder encoder_layer_pos -= 1 continue elif name not in encoder_modules: continue elif depth > 500: raise ValueError( "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is" " a circular dependency between two or more `nn.Modules` of your model." ) else: decoder_name = encoder_name = name tie_encoder_to_decoder_recursively( decoder_modules[decoder_name], encoder_modules[encoder_name], module_name + "/" + name, base_encoder_name, uninitialized_encoder_weights, depth=depth + 1, total_encoder_name=f"{total_encoder_name}.{encoder_name}", total_decoder_name=f"{total_decoder_name}.{decoder_name}", ) all_encoder_weights.remove(module_name + "/" + encoder_name) uninitialized_encoder_weights += list(all_encoder_weights) # tie weights recursively tie_encoder_to_decoder_recursively( decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights ) if len(uninitialized_encoder_weights) > 0: logger.warning( f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" ) return tied_weights def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """Tie or clone module weights depending of whether we are using TorchScript or not""" if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = nn.functional.pad( output_embeddings.bias.data, ( 0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], ), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings def _get_no_split_modules(self, device_map: str): """ Get the modules of the model that should not be spit when using device_map. We iterate through the modules to get the underlying `_no_split_modules`. Args: device_map (`str`): The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"] Returns: `List[str]`: List of modules that should not be split """ _no_split_modules = set() modules_to_check = [self] while len(modules_to_check) > 0: module = modules_to_check.pop(-1) # if the module does not appear in _no_split_modules, we also check the children if module.__class__.__name__ not in _no_split_modules: if isinstance(module, PreTrainedModel): if module._no_split_modules is None: raise ValueError( f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model " "class needs to implement the `_no_split_modules` attribute." ) else: _no_split_modules = _no_split_modules | set(module._no_split_modules) modules_to_check += list(module.children()) return list(_no_split_modules) def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None ) -> nn.Embedding: """ Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens (`int`, *optional*): The new number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. pad_to_multiple_of (`int`, *optional*): If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to `None` will just pad the embedding to a multiple of `pad_to_multiple_of`. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Return: `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. """ model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) if new_num_tokens is None and pad_to_multiple_of is None: return model_embeds # Update base model and current model config self.config.vocab_size = model_embeds.weight.shape[0] self.vocab_size = model_embeds.weight.shape[0] # Tie weights again if needed self.tie_weights() return model_embeds def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of) if hasattr(old_embeddings, "_hf_hook"): hook = old_embeddings._hf_hook add_hook_to_module(new_embeddings, hook) old_embeddings_requires_grad = old_embeddings.weight.requires_grad new_embeddings.requires_grad_(old_embeddings_requires_grad) self.set_input_embeddings(new_embeddings) is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None # Update new_num_tokens with the actual size of new_embeddings if pad_to_multiple_of is not None: if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None): new_num_tokens = new_embeddings.weight.shape[0] else: new_num_tokens = new_embeddings.weight.shape[0] # if word embeddings are not tied, make sure that lm head is resized as well if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: old_lm_head = self.get_output_embeddings() if isinstance(old_lm_head, torch.nn.Embedding): new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens) else: new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) if hasattr(old_lm_head, "_hf_hook"): hook = old_lm_head._hf_hook add_hook_to_module(new_lm_head, hook) old_lm_head_requires_grad = old_lm_head.weight.requires_grad new_lm_head.requires_grad_(old_lm_head_requires_grad) self.set_output_embeddings(new_lm_head) return self.get_input_embeddings() def _get_resized_embeddings( self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, ) -> nn.Embedding: """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_embeddings (`torch.nn.Embedding`): Old embeddings to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. pad_to_multiple_of (`int`, *optional*): If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to `None` will just pad the embedding to a multiple of `pad_to_multiple_of`. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Return: `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is `None` """ if pad_to_multiple_of is not None: if not isinstance(pad_to_multiple_of, int): raise ValueError( f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer" ) if new_num_tokens is None: new_num_tokens = old_embeddings.weight.shape[0] new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of else: logger.info( "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding" f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available." " For more details about this, or help on choosing the correct value for resizing, refer to this guide:" " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc" ) if new_num_tokens is None: return old_embeddings is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None): old_num_tokens, old_embedding_dim = old_embeddings.weight.size() else: old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled(): return old_embeddings if not isinstance(old_embeddings, nn.Embedding): raise TypeError( f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You" " should either use a different resize function or make sure that `old_embeddings` are an instance of" f" {nn.Embedding}." ) # Build new embeddings # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init # because the shape of the new embedding layer is used across various modeling files # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading # to errors when training. new_embeddings = nn.Embedding( new_num_tokens, old_embedding_dim, device=old_embeddings.weight.device, dtype=old_embeddings.weight.dtype, ) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights # numbers of tokens to copy n = min(old_num_tokens, new_num_tokens) if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed params = [old_embeddings.weight, new_embeddings.weight] with deepspeed.zero.GatheredParameters(params, modifier_rank=0): new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] else: new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] return new_embeddings def _get_resized_lm_head( self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False ) -> nn.Linear: """ Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_lm_head (`torch.nn.Linear`): Old lm head liner layer to be resized. new_num_tokens (`int`, *optional*): New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just returns a pointer to the input tokens `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim, vocab_size` else `vocab_size, lm_head_dim`. Return: `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is `None` """ if new_num_tokens is None: return old_lm_head is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None): old_num_tokens, old_lm_head_dim = ( old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() ) else: old_num_tokens, old_lm_head_dim = ( old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() ) if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled(): return old_lm_head if not isinstance(old_lm_head, nn.Linear): raise TypeError( f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You" " should either use a different resize function or make sure that `old_lm_head` are an instance of" f" {nn.Linear}." ) # Build new lm head new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim) has_new_lm_head_bias = old_lm_head.bias is not None # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init # because the shape of the new embedding layer is used across various modeling files # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading # to errors when training. new_lm_head = nn.Linear( *new_lm_head_shape, bias=has_new_lm_head_bias, device=old_lm_head.weight.device, dtype=old_lm_head.weight.dtype, ) # initialize new lm head (in particular added tokens) self._init_weights(new_lm_head) num_tokens_to_copy = min(old_num_tokens, new_num_tokens) if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias] with deepspeed.zero.GatheredParameters(params, modifier_rank=0): self._copy_lm_head_original_to_resized( new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias ) else: self._copy_lm_head_original_to_resized( new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias ) return new_lm_head def _copy_lm_head_original_to_resized( self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias ): # Copy old lm head weights to new lm head if not transposed: new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :] else: new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy] # Copy bias weights to new lm head if has_new_lm_head_bias: new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy] def resize_position_embeddings(self, new_num_position_embeddings: int): raise NotImplementedError( f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should " f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`" ) def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]: raise NotImplementedError( f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should " f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`" ) def init_weights(self): """ If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any initialization logic in `_init_weights`. """ # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) if _init_weights: # Initialize weights self.apply(self._initialize_weights) # Tie weights should be skipped when not initializing all weights # since from_pretrained(...) calls tie weights anyways self.tie_weights() def prune_heads(self, heads_to_prune: Dict[int, List[int]]): """ Prunes heads of the base model. Arguments: heads_to_prune (`Dict[int, List[int]]`): Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune) def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): """ Activates gradient checkpointing for the current model. Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint activations". We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 Args: gradient_checkpointing_kwargs (dict, *optional*): Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function. """ if not self.supports_gradient_checkpointing: raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") if gradient_checkpointing_kwargs is None: gradient_checkpointing_kwargs = {"use_reentrant": True} gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs) # For old GC format (transformers < 4.35.0) for models that live on the Hub # we will fall back to the overwritten `_set_gradient_checkpointing` method _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters if not _is_using_old_format: self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func) else: self.apply(partial(self._set_gradient_checkpointing, value=True)) logger.warning( "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)." "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model." ) if getattr(self, "_hf_peft_config_loaded", False): # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334 # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate # the gradients to make sure the gradient flows. self.enable_input_require_grads() def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint): is_gradient_checkpointing_set = False # Apply it on the top-level module in case the top-level modules supports it # for example, LongT5Stack inherits from `PreTrainedModel`. if hasattr(self, "gradient_checkpointing"): self._gradient_checkpointing_func = gradient_checkpointing_func self.gradient_checkpointing = enable is_gradient_checkpointing_set = True for module in self.modules(): if hasattr(module, "gradient_checkpointing"): module._gradient_checkpointing_func = gradient_checkpointing_func module.gradient_checkpointing = enable is_gradient_checkpointing_set = True if not is_gradient_checkpointing_set: raise ValueError( f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute" " `gradient_checkpointing` to modules of the model that uses checkpointing." ) def gradient_checkpointing_disable(self): """ Deactivates gradient checkpointing for the current model. Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint activations". """ if self.supports_gradient_checkpointing: # For old GC format (transformers < 4.35.0) for models that live on the Hub # we will fall back to the overwritten `_set_gradient_checkpointing` methid _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters if not _is_using_old_format: self._set_gradient_checkpointing(enable=False) else: logger.warning( "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)." "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model." ) self.apply(partial(self._set_gradient_checkpointing, value=False)) if getattr(self, "_hf_peft_config_loaded", False): self.disable_input_require_grads() @property def is_gradient_checkpointing(self) -> bool: """ Whether gradient checkpointing is activated for this model or not. Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint activations". """ return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) def save_pretrained( self, save_directory: Union[str, os.PathLike], is_main_process: bool = True, state_dict: Optional[dict] = None, save_function: Callable = torch.save, push_to_hub: bool = False, max_shard_size: Union[int, str] = "5GB", safe_serialization: bool = True, variant: Optional[str] = None, token: Optional[Union[str, bool]] = None, save_peft_format: bool = True, **kwargs, ): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the [`~PreTrainedModel.from_pretrained`] class method. Arguments: save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful when in distributed training like TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. state_dict (nested dictionary of `torch.Tensor`): The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only save parts of the model or if special precautions need to be taken when recovering the state dictionary of a model (like when using model parallelism). save_function (`Callable`): The function to use to save the state dictionary. Useful on distributed training like TPUs when one need to replace `torch.save` by another method. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to 5GB in order for models to be able to run easily on free-tier google colab instances without CPU OOM issues. If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). variant (`str`, *optional*): If specified, weights are saved in the format pytorch_model..bin. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). save_peft_format (`bool`, *optional*, defaults to `True`): For backward compatibility with PEFT library, in case adapter weights are attached to the model, all keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can disable this behaviours by setting `save_peft_format` to `False`. kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False) hf_quantizer = getattr(self, "hf_quantizer", None) quantization_serializable = ( hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable ) if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable: raise ValueError( f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from" " the logger on the traceback to understand the reason why the quantized model is not serializable." ) if "save_config" in kwargs: warnings.warn( "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead." ) is_main_process = kwargs.pop("save_config") if safe_serialization and not is_safetensors_available(): raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.") if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # Only save the model itself if we are using distributed training model_to_save = unwrap_model(self) # save the string version of dtype to the config, e.g. convert torch.float32 => "float32" # we currently don't use this setting automatically, but may start to use with v5 dtype = get_parameter_dtype(model_to_save) model_to_save.config.torch_dtype = str(dtype).split(".")[1] # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self.config) # Save the config if is_main_process: if not _hf_peft_config_loaded: model_to_save.config.save_pretrained(save_directory) if self.can_generate(): # generation config built from the model config + the model config holds generation kwargs -> generate # may revert to legacy behavior if the two don't match if ( model_to_save.generation_config._from_model_config and model_to_save.config._has_non_default_generation_parameters() ): new_generation_config = GenerationConfig.from_model_config(model_to_save.config) if new_generation_config != model_to_save.generation_config: logger.warning( "Your generation config was originally created from the model config, but the model " "config has changed since then. Unless you pass the `generation_config` argument to this " "model's `generate` calls, they will revert to the legacy behavior where the base " "`generate` parameterization is loaded from the model config instead. " "To avoid this behavior and this warning, we recommend you to overwrite the generation " "config model attribute before calling the model's `save_pretrained`, preferably also " "removing any generation kwargs from the model config. This warning will be raised to an " "exception in v4.41." ) model_to_save.generation_config.save_pretrained(save_directory) if _hf_peft_config_loaded: logger.info( "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved." ) state_dict = model_to_save.get_adapter_state_dict() if save_peft_format: logger.info( "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`." ) peft_state_dict = {} for key, value in state_dict.items(): peft_state_dict[f"base_model.model.{key}"] = value state_dict = peft_state_dict active_adapter = self.active_adapters() if len(active_adapter) > 1: raise ValueError( "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one " "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`" ) active_adapter = active_adapter[0] current_peft_config = self.peft_config[active_adapter] current_peft_config.save_pretrained(save_directory) # Save the model if state_dict is None: state_dict = model_to_save.state_dict() # Translate state_dict from smp to hf if saving with smp >= 1.10 if IS_SAGEMAKER_MP_POST_1_10: for smp_to_hf, _ in smp.state.module_manager.translate_functions: state_dict = smp_to_hf(state_dict) # Handle the case where some state_dict keys shouldn't be saved if self._keys_to_ignore_on_save is not None: for ignore_key in self._keys_to_ignore_on_save: if ignore_key in state_dict.keys(): del state_dict[ignore_key] if safe_serialization: # Safetensors does not allow tensor aliasing. # We're going to remove aliases before saving ptrs = collections.defaultdict(list) for name, tensor in state_dict.items(): # Sometimes in the state_dict we have non-tensor objects. # e.g. in bitsandbytes we have some `str` objects in the state_dict if isinstance(tensor, torch.Tensor): ptrs[id_tensor_storage(tensor)].append(name) else: # In the non-tensor case, fall back to the pointer of the object itself ptrs[id(tensor)].append(name) # These are all the pointers of shared tensors. shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} error_names = [] to_delete_names = set() # Recursively descend to find tied weight keys _tied_weights_keys = _get_tied_weight_keys(self) for names in shared_ptrs.values(): # Removing the keys which are declared as known duplicates on # load. This allows to make sure the name which is kept is consistent. if _tied_weights_keys is not None: found = 0 for name in sorted(names): matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys) if matches_pattern and name in state_dict: found += 1 if found < len(names): to_delete_names.add(name) # We are entering a place where the weights and the transformers configuration do NOT match. shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict) # Those are actually tensor sharing but disjoint from each other, we can safely clone them # Reloaded won't have the same property, but it shouldn't matter in any meaningful way. for name in disjoint_names: state_dict[name] = state_dict[name].clone() # When not all duplicates have been cleaned, still remove those keys, but put a clear warning. # If the link between tensors was done at runtime then `from_pretrained` will not get # the key back leading to random tensor. A proper warning will be shown # during reload (if applicable), but since the file is not necessarily compatible with # the config, better show a proper warning. shared_names, identical_names = _find_identical(shared_names, state_dict) # delete tensors that have identical storage for inames in identical_names: known = inames.intersection(to_delete_names) for name in known: del state_dict[name] unknown = inames.difference(to_delete_names) if len(unknown) > 1: error_names.append(unknown) if shared_names: error_names.append(set(shared_names)) if len(error_names) > 0: raise RuntimeError( f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.", ) # Shard the model if it is too big. if not _hf_peft_config_loaded: weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME weights_name = _add_variant(weights_name, variant) else: weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) # If we have a shard file that is not going to be replaced, we delete it, but only from the main process # in distributed settings to avoid race conditions. weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "") reg = re.compile(r"(.*?)-\d{5}-of-\d{5}") if ( filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and filename not in shards.keys() and is_main_process and reg.fullmatch(filename_no_suffix) is not None ): os.remove(full_filename) # Save the model for shard_file, shard in shards.items(): if safe_serialization: # At some point we will need to deal better with save_function (used for TPU and other distributed # joyfulness), but for now this enough. safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"}) else: save_function(shard, os.path.join(save_directory, shard_file)) if index is None: path_to_weights = os.path.join(save_directory, weights_name) logger.info(f"Model weights saved in {path_to_weights}") else: save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) if push_to_hub: # Eventually create an empty model card model_card = create_and_tag_model_card( repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors ) # Update model card if needed: model_card.save(os.path.join(save_directory, "README.md")) self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token, ) @wraps(PushToHubMixin.push_to_hub) def push_to_hub(self, *args, **kwargs): tags = self.model_tags if self.model_tags is not None else [] tags_kwargs = kwargs.get("tags", []) if isinstance(tags_kwargs, str): tags_kwargs = [tags_kwargs] for tag in tags_kwargs: if tag not in tags: tags.append(tag) if tags: kwargs["tags"] = tags return super().push_to_hub(*args, **kwargs) def get_memory_footprint(self, return_buffers=True): r""" Get the memory footprint of a model. This will return the memory footprint of the current model in bytes. Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2 Arguments: return_buffers (`bool`, *optional*, defaults to `True`): Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2 """ mem = sum([param.nelement() * param.element_size() for param in self.parameters()]) if return_buffers: mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()]) mem = mem + mem_bufs return mem @wraps(torch.nn.Module.cuda) def cuda(self, *args, **kwargs): # Checks if the model has been loaded in 8-bit if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES: raise ValueError( "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the" " model has already been set to the correct devices and casted to the correct `dtype`." ) else: return super().cuda(*args, **kwargs) @wraps(torch.nn.Module.to) def to(self, *args, **kwargs): # Checks if the model has been loaded in 8-bit if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES: raise ValueError( "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the" " model has already been set to the correct devices and casted to the correct `dtype`." ) elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ: # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours. # the correct API should be to load the model with the desired dtype directly through `from_pretrained`. dtype_present_in_args = False if "dtype" not in kwargs: for arg in args: if isinstance(arg, torch.dtype): dtype_present_in_args = True break else: dtype_present_in_args = True if dtype_present_in_args: raise ValueError( "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired" " `dtype` by passing the correct `torch_dtype` argument." ) return super().to(*args, **kwargs) def half(self, *args): # Checks if the model is quantized if getattr(self, "is_quantized", False): raise ValueError( "`.half()` is not supported for quantized model. Please use the model as it is, since the" " model has already been casted to the correct `dtype`." ) else: return super().half(*args) def float(self, *args): # Checks if the model is quantized if getattr(self, "is_quantized", False): raise ValueError( "`.float()` is not supported for quantized model. Please use the model as it is, since the" " model has already been casted to the correct `dtype`." ) else: return super().float(*args) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", use_safetensors: bool = None, **kwargs, ): r""" Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you should first set it back in training mode with `model.train()`. The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g, `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to `True`. - `None` if you are both providing the configuration and state dictionary (resp. with keyword arguments `config` and `state_dict`). model_args (sequence of positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*): Can be either: - an instance of a class derived from [`PretrainedConfig`], - a string or path valid as input to [`~PretrainedConfig.from_pretrained`]. Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. state_dict (`Dict[str, torch.Tensor]`, *optional*): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and [`~PreTrainedModel.from_pretrained`] is not a simpler option. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (`bool`, *optional*, defaults to `False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). from_flax (`bool`, *optional*, defaults to `False`): Load the model weights from a Flax checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model (if for instance, you are instantiating a model with 10 labels from a checkpoint with 3 labels). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. To test a pull request you made on the Hub, you can pass `revision="refs/pr/". mirror (`str`, *optional*): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. _fast_init(`bool`, *optional*, defaults to `True`): Whether or not to disable fast initialization. One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ < 4.6.0` for seeded model initialization. This argument will be removed at the next major version. See [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information. attn_implementation (`str`, *optional*): The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation. > Parameters for big model inference low_cpu_mem_usage(`bool`, *optional*): Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. This is an experimental feature and a subject to change at any moment. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model under a specific `dtype`. The different options are: 1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified - the model will get loaded in `torch.float` (fp32). 2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in the checkpoint that's of a floating point type and use that as `dtype`. This will load the model using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32. For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or reach out to the authors and ask them to add this information to the model's card and to insert the `torch_dtype` entry in `config.json` on the hub. device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which the model will be allocated, the device map will map the entire model to this device. Passing `device_map = 0` means put the whole model on GPU 0. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset. offload_folder (`str` or `os.PathLike`, *optional*): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. offload_state_dict (`bool`, *optional*): If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` when there is some disk offload. offload_buffers (`bool`, *optional*): Whether or not to offload the buffers with the model parameters. quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*): A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes quantizations and not preferred. consider inserting all such arguments into quantization_config instead. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. variant (`str`, *optional*): If specified load weights from `variant` filename, *e.g.* pytorch_model..bin. `variant` is ignored when using `from_tf` or `from_flax`. use_safetensors (`bool`, *optional*, defaults to `None`): Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors` is not installed, it will be set to `False`. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to use this method in a firewalled environment. Examples: ```python >>> from transformers import BertConfig, BertModel >>> # Download model and configuration from huggingface.co and cache. >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased") >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> model = BertModel.from_pretrained("./test/saved_model/") >>> # Update configuration during loading. >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True) >>> assert model.config.output_attentions == True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json") >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config) >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower) >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True) ``` * `low_cpu_mem_usage` algorithm: This is an experimental function that loads the model using ~1x model size CPU memory Here is how it works: 1. save which state_dict keys we have 2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory 3. after the model has been instantiated switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict 4. load state_dict 2nd time 5. replace the params/buffers from the state_dict Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors """ state_dict = kwargs.pop("state_dict", None) from_tf = kwargs.pop("from_tf", False) from_flax = kwargs.pop("from_flax", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) use_auth_token = kwargs.pop("use_auth_token", None) trust_remote_code = kwargs.pop("trust_remote_code", None) _ = kwargs.pop("mirror", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) _fast_init = kwargs.pop("_fast_init", True) torch_dtype = kwargs.pop("torch_dtype", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None) device_map = kwargs.pop("device_map", None) max_memory = kwargs.pop("max_memory", None) offload_folder = kwargs.pop("offload_folder", None) offload_state_dict = kwargs.pop("offload_state_dict", False) offload_buffers = kwargs.pop("offload_buffers", False) load_in_8bit = kwargs.pop("load_in_8bit", False) load_in_4bit = kwargs.pop("load_in_4bit", False) quantization_config = kwargs.pop("quantization_config", None) subfolder = kwargs.pop("subfolder", "") commit_hash = kwargs.pop("_commit_hash", None) variant = kwargs.pop("variant", None) adapter_kwargs = kwargs.pop("adapter_kwargs", {}) adapter_name = kwargs.pop("adapter_name", "default") use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False) if is_fsdp_enabled(): low_cpu_mem_usage = True if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs: adapter_kwargs["token"] = token if use_safetensors is None and not is_safetensors_available(): use_safetensors = False if trust_remote_code is True: logger.warning( "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" " ignored." ) if commit_hash is None: if not isinstance(config, PretrainedConfig): # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible resolved_config_file = cached_file( pretrained_model_name_or_path, CONFIG_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, ) commit_hash = extract_commit_hash(resolved_config_file, commit_hash) else: commit_hash = getattr(config, "_commit_hash", None) if is_peft_available(): _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None) if _adapter_model_path is None: _adapter_model_path = find_adapter_config_file( pretrained_model_name_or_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, _commit_hash=commit_hash, **adapter_kwargs, ) if _adapter_model_path is not None and os.path.isfile(_adapter_model_path): with open(_adapter_model_path, "r", encoding="utf-8") as f: _adapter_model_path = pretrained_model_name_or_path pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"] else: _adapter_model_path = None # change device_map into a map if we passed an int, a str or a torch.device if isinstance(device_map, torch.device): device_map = {"": device_map} elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: try: device_map = {"": torch.device(device_map)} except RuntimeError: raise ValueError( "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." ) elif isinstance(device_map, int): if device_map < 0: raise ValueError( "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " ) else: device_map = {"": device_map} if device_map is not None: if low_cpu_mem_usage is None: low_cpu_mem_usage = True elif not low_cpu_mem_usage: raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") if low_cpu_mem_usage: if is_deepspeed_zero3_enabled(): raise ValueError( "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`." ) elif not is_accelerate_available(): raise ImportError( "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`" ) # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation. if load_in_4bit or load_in_8bit: if quantization_config is not None: raise ValueError( "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing " "`quantization_config` argument at the same time." ) # preparing BitsAndBytesConfig from kwargs config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters} config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit} quantization_config, kwargs = BitsAndBytesConfig.from_dict( config_dict=config_dict, return_unused_kwargs=True, **kwargs ) logger.warning( "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. " "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead." ) from_pt = not (from_tf | from_flax) user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) else: # In case one passes a config to `from_pretrained` + "attn_implementation" # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs # Please see: https://github.com/huggingface/transformers/issues/28038 # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory # we pop attn_implementation from the kwargs but this handles the case where users # passes manually the config to `from_pretrained`. config = copy.deepcopy(config) kwarg_attn_imp = kwargs.pop("attn_implementation", None) if kwarg_attn_imp is not None: config._attn_implementation = kwarg_attn_imp model_kwargs = kwargs pre_quantized = getattr(config, "quantization_config", None) is not None if pre_quantized or quantization_config is not None: if pre_quantized: config.quantization_config = AutoHfQuantizer.merge_quantization_configs( config.quantization_config, quantization_config ) else: config.quantization_config = quantization_config hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized) else: hf_quantizer = None if hf_quantizer is not None: hf_quantizer.validate_environment( torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map ) torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype) device_map = hf_quantizer.update_device_map(device_map) # Force-set to `True` for more mem efficiency if low_cpu_mem_usage is None: low_cpu_mem_usage = True logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.") is_quantized = hf_quantizer is not None # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the # index of the files. is_sharded = False sharded_metadata = None # Load model loading_info = None # Keep in fp32 modules keep_in_fp32_modules = None use_keep_in_fp32_modules = False if pretrained_model_name_or_path is not None: pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if is_local: if from_tf and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index") ): # Load from a TF 1.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME) ): # Load from a TF 2.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME) elif from_flax and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) ): # Load from a Flax checkpoint in priority if from_flax archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) elif use_safetensors is not False and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)) ): # Load from a safetensors checkpoint archive_file = os.path.join( pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant) ) elif use_safetensors is not False and os.path.isfile( os.path.join( pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant) ) ): # Load from a sharded safetensors checkpoint archive_file = os.path.join( pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant) ) is_sharded = True elif os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)) ): # Load from a PyTorch checkpoint archive_file = os.path.join( pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant) ) elif os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)) ): # Load from a sharded PyTorch checkpoint archive_file = os.path.join( pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant) ) is_sharded = True # At this stage we don't have a weight file so we will raise an error. elif os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index") ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)): raise EnvironmentError( f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory" f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use" " `from_tf=True` to load this model from those weights." ) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)): raise EnvironmentError( f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory" f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`" " to load this model from those weights." ) elif use_safetensors: raise EnvironmentError( f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory" f" {pretrained_model_name_or_path}." ) else: raise EnvironmentError( f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}," f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory" f" {pretrained_model_name_or_path}." ) elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): archive_file = pretrained_model_name_or_path is_local = True elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")): if not from_tf: raise ValueError( f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set " "from_tf to True to load from this checkpoint." ) archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index") is_local = True elif is_remote_url(pretrained_model_name_or_path): filename = pretrained_model_name_or_path resolved_archive_file = download_url(pretrained_model_name_or_path) else: # set correct filename if from_tf: filename = TF2_WEIGHTS_NAME elif from_flax: filename = FLAX_WEIGHTS_NAME elif use_safetensors is not False: filename = _add_variant(SAFE_WEIGHTS_NAME, variant) else: filename = _add_variant(WEIGHTS_NAME, variant) try: # Load from URL or cache if already cached cached_file_kwargs = { "cache_dir": cache_dir, "force_download": force_download, "proxies": proxies, "resume_download": resume_download, "local_files_only": local_files_only, "token": token, "user_agent": user_agent, "revision": revision, "subfolder": subfolder, "_raise_exceptions_for_gated_repo": False, "_raise_exceptions_for_missing_entries": False, "_commit_hash": commit_hash, } resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None # result when internet is up, the repo and revision exist, but the file does not. if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant): # Maybe the checkpoint is sharded, we try to grab the index name in this case. resolved_archive_file = cached_file( pretrained_model_name_or_path, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant), **cached_file_kwargs, ) if resolved_archive_file is not None: is_sharded = True elif use_safetensors: if revision == "main": resolved_archive_file, revision, is_sharded = auto_conversion( pretrained_model_name_or_path, **cached_file_kwargs ) cached_file_kwargs["revision"] = revision if resolved_archive_file is None: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} " "and thus cannot be loaded with `safetensors`. Please make sure that the model has " "been saved with `safe_serialization=True` or do not set `use_safetensors=True`." ) else: # This repo has no safetensors file of any kind, we switch to PyTorch. filename = _add_variant(WEIGHTS_NAME, variant) resolved_archive_file = cached_file( pretrained_model_name_or_path, filename, **cached_file_kwargs ) if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant): # Maybe the checkpoint is sharded, we try to grab the index name in this case. resolved_archive_file = cached_file( pretrained_model_name_or_path, _add_variant(WEIGHTS_INDEX_NAME, variant), **cached_file_kwargs, ) if resolved_archive_file is not None: is_sharded = True if resolved_archive_file is not None: if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]: # If the PyTorch file was found, check if there is a safetensors file on the repository # If there is no safetensors file on the repositories, start an auto conversion safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME has_file_kwargs = { "revision": revision, "proxies": proxies, "token": token, } cached_file_kwargs = { "cache_dir": cache_dir, "force_download": force_download, "resume_download": resume_download, "local_files_only": local_files_only, "user_agent": user_agent, "subfolder": subfolder, "_raise_exceptions_for_gated_repo": False, "_raise_exceptions_for_missing_entries": False, "_commit_hash": commit_hash, **has_file_kwargs, } if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs): Thread( target=auto_conversion, args=(pretrained_model_name_or_path,), kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs}, name="Thread-autoconversion", ).start() else: # Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file. # We try those to give a helpful error message. has_file_kwargs = { "revision": revision, "proxies": proxies, "token": token, } if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights." " Use `from_tf=True` to load this model from those weights." ) elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use" " `from_flax=True` to load this model from those weights." ) elif variant is not None and has_file( pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs ): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant" f" {variant}. Use `variant=None` to load this model from those weights." ) else: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or" f" {FLAX_WEIGHTS_NAME}." ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception as e: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)}," f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}." ) from e if is_local: logger.info(f"loading weights file {archive_file}") resolved_archive_file = archive_file else: logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") else: resolved_archive_file = None # We'll need to download and cache each checkpoint shard if the checkpoint is sharded. if is_sharded: # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. resolved_archive_file, sharded_metadata = get_checkpoint_shard_files( pretrained_model_name_or_path, resolved_archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _commit_hash=commit_hash, ) if ( is_safetensors_available() and isinstance(resolved_archive_file, str) and resolved_archive_file.endswith(".safetensors") ): with safe_open(resolved_archive_file, framework="pt") as f: metadata = f.metadata() if metadata.get("format") == "pt": pass elif metadata.get("format") == "tf": from_tf = True logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.") elif metadata.get("format") == "flax": from_flax = True logger.info("A Flax safetensors file is being loaded in a PyTorch model.") elif metadata.get("format") == "mlx": # This is a mlx file, we assume weights are compatible with pt pass else: raise ValueError( f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}" ) from_pt = not (from_tf | from_flax) # load pt weights early so that we know which dtype to init the model under if from_pt: if not is_sharded and state_dict is None: # Time to load the checkpoint state_dict = load_state_dict(resolved_archive_file) # set dtype to instantiate the model under: # 1. If torch_dtype is not None, we use that dtype # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first # weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype # we also may have config.torch_dtype available, but we won't rely on it till v5 dtype_orig = None if torch_dtype is not None: if isinstance(torch_dtype, str): if torch_dtype == "auto": if hasattr(config, "torch_dtype") and config.torch_dtype is not None: torch_dtype = config.torch_dtype logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object") else: if is_sharded and "dtype" in sharded_metadata: torch_dtype = sharded_metadata["dtype"] elif not is_sharded: torch_dtype = get_state_dict_dtype(state_dict) else: one_state_dict = load_state_dict(resolved_archive_file[0]) torch_dtype = get_state_dict_dtype(one_state_dict) del one_state_dict # free CPU memory logger.info( "Since the `torch_dtype` attribute can't be found in model's config object, " "will use torch_dtype={torch_dtype} as derived from model's weights" ) else: raise ValueError( f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}' ) dtype_orig = cls._set_default_torch_dtype(torch_dtype) # Check if `_keep_in_fp32_modules` is not None use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and ( (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules") ) if is_sharded: loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"] else: loaded_state_dict_keys = list(state_dict.keys()) if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()): # In case some weights need to be kept in float32 and accelerate is not installed, # we later on want to take the path where state_dict is not None, that is the one # that do not require accelerate. state_dict = None config.name_or_path = pretrained_model_name_or_path # Instantiate model. init_contexts = [no_init_weights(_enable=_fast_init)] if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts elif low_cpu_mem_usage: init_contexts.append(init_empty_weights()) config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained. config = cls._autoset_attn_implementation( config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map ) with ContextManagers(init_contexts): # Let's make sure we don't run the init function of buffer modules model = cls(config, *model_args, **model_kwargs) # make sure we use the model's config since the __init__ call might have copied it config = model.config # Check first if we are `from_pt` if use_keep_in_fp32_modules: if is_accelerate_available() and not is_deepspeed_zero3_enabled(): low_cpu_mem_usage = True keep_in_fp32_modules = model._keep_in_fp32_modules else: keep_in_fp32_modules = [] if hf_quantizer is not None: hf_quantizer.preprocess_model( model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules ) # We store the original dtype for quantized models as we cannot easily retrieve it # once the weights have been quantized # Note that once you have loaded a quantized model, you can't change its dtype so this will # remain a single source of truth config._pre_quantization_dtype = torch_dtype if isinstance(device_map, str): special_dtypes = {} if hf_quantizer is not None: special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype)) special_dtypes.update( { name: torch.float32 for name, _ in model.named_parameters() if any(m in name for m in keep_in_fp32_modules) } ) target_dtype = torch_dtype if hf_quantizer is not None: target_dtype = hf_quantizer.adjust_target_dtype(target_dtype) no_split_modules = model._get_no_split_modules(device_map) if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) device_map_kwargs = {"no_split_module_classes": no_split_modules} if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters: device_map_kwargs["special_dtypes"] = special_dtypes elif len(special_dtypes) > 0: logger.warning( "This model has some weights that should be kept in higher precision, you need to upgrade " "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)." ) if device_map != "sequential": max_memory = get_balanced_memory( model, dtype=target_dtype, low_zero=(device_map == "balanced_low_0"), max_memory=max_memory, **device_map_kwargs, ) else: max_memory = get_max_memory(max_memory) if hf_quantizer is not None: max_memory = hf_quantizer.adjust_max_memory(max_memory) device_map_kwargs["max_memory"] = max_memory # Make sure tied weights are tied before creating the device map. model.tie_weights() device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs) if hf_quantizer is not None: hf_quantizer.validate_environment(device_map=device_map) elif device_map is not None: model.tie_weights() tied_params = find_tied_parameters(model) # check if we don't have tied param in different devices check_tied_parameters_on_same_device(tied_params, device_map) if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model model, loading_info = load_tf2_checkpoint_in_pytorch_model( model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True ) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed." " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation" " instructions." ) raise elif from_flax: try: from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file) except ImportError: logger.error( "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for" " installation instructions." ) raise elif from_pt: # restore default dtype if dtype_orig is not None: torch.set_default_dtype(dtype_orig) ( model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs, ) = cls._load_pretrained_model( model, state_dict, loaded_state_dict_keys, # XXX: rename? resolved_archive_file, pretrained_model_name_or_path, ignore_mismatched_sizes=ignore_mismatched_sizes, sharded_metadata=sharded_metadata, _fast_init=_fast_init, low_cpu_mem_usage=low_cpu_mem_usage, device_map=device_map, offload_folder=offload_folder, offload_state_dict=offload_state_dict, dtype=torch_dtype, hf_quantizer=hf_quantizer, keep_in_fp32_modules=keep_in_fp32_modules, ) # make sure token embedding weights are still tied if needed model.tie_weights() # Set model in evaluation mode to deactivate DropOut modules by default model.eval() # If it is a model with generation capabilities, attempt to load the generation config if model.can_generate() and pretrained_model_name_or_path is not None: try: model.generation_config = GenerationConfig.from_pretrained( pretrained_model_name_or_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) except OSError: logger.info( "Generation config file not found, using a generation config created from the model config." ) pass # Dispatch model with hooks on all devices if necessary if device_map is not None: device_map_kwargs = { "device_map": device_map, "offload_dir": offload_folder, "offload_index": offload_index, "offload_buffers": offload_buffers, } if "skip_keys" in inspect.signature(dispatch_model).parameters: device_map_kwargs["skip_keys"] = model._skip_keys_device_placement if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled(): dispatch_model(model, **device_map_kwargs) if hf_quantizer is not None: hf_quantizer.postprocess_model(model) model.hf_quantizer = hf_quantizer if _adapter_model_path is not None: model.load_adapter( _adapter_model_path, adapter_name=adapter_name, token=token, adapter_kwargs=adapter_kwargs, ) if output_loading_info: if loading_info is None: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, "error_msgs": error_msgs, } return model, loading_info return model @classmethod def _load_pretrained_model( cls, model, state_dict, loaded_keys, resolved_archive_file, pretrained_model_name_or_path, ignore_mismatched_sizes=False, sharded_metadata=None, _fast_init=True, low_cpu_mem_usage=False, device_map=None, offload_folder=None, offload_state_dict=None, dtype=None, hf_quantizer=None, keep_in_fp32_modules=None, ): is_safetensors = False is_quantized = hf_quantizer is not None if device_map is not None and "disk" in device_map.values(): archive_file = ( resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file ) is_safetensors = archive_file.endswith(".safetensors") if offload_folder is None and not is_safetensors: raise ValueError( "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`" " for them. Alternatively, make sure you have `safetensors` installed if the model you are using" " offers the weights in this format." ) if offload_folder is not None: os.makedirs(offload_folder, exist_ok=True) if offload_state_dict is None: offload_state_dict = True is_sharded_safetensors = is_safetensors and sharded_metadata is not None # tie the model weights before retrieving the state_dict model.tie_weights() # Retrieve missing & unexpected_keys model_state_dict = model.state_dict() expected_keys = list(model_state_dict.keys()) prefix = model.base_model_prefix def _fix_key(key): if "beta" in key: return key.replace("beta", "bias") if "gamma" in key: return key.replace("gamma", "weight") return key original_loaded_keys = loaded_keys loaded_keys = [_fix_key(key) for key in loaded_keys] if len(prefix) > 0: has_prefix_module = any(s.startswith(prefix) for s in loaded_keys) expects_prefix_module = any(s.startswith(prefix) for s in expected_keys) else: has_prefix_module = False expects_prefix_module = False # key re-naming operations are never done on the keys # that are loaded, but always on the keys of the newly initialized model remove_prefix_from_model = not has_prefix_module and expects_prefix_module add_prefix_to_model = has_prefix_module and not expects_prefix_module if remove_prefix_from_model: _prefix = f"{prefix}." expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)] expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys] elif add_prefix_to_model: expected_keys = [".".join([prefix, s]) for s in expected_keys] missing_keys = sorted(set(expected_keys) - set(loaded_keys)) unexpected_keys = set(loaded_keys) - set(expected_keys) # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model # buffers model_buffers = {n for n, _ in model.named_buffers()} if remove_prefix_from_model: model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers} elif add_prefix_to_model: model_buffers = {".".join([prefix, key]) for key in model_buffers} unexpected_keys = sorted(unexpected_keys - model_buffers) model.tie_weights() if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled(): ptrs = collections.defaultdict(list) for name, tensor in model.state_dict().items(): id_tensor = id_tensor_storage(tensor) ptrs[id_tensor].append(name) # These are all the pointers of shared tensors. tied_params = [names for _, names in ptrs.items() if len(names) > 1] else: # id function doesn't work for meta tensor so we need this function tied_params = find_tied_parameters(model) for group in tied_params: if remove_prefix_from_model: group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group] elif add_prefix_to_model: group = [".".join([prefix, key]) for key in group] missing_in_group = [k for k in missing_keys if k in group] if len(missing_in_group) > 0 and len(missing_in_group) < len(group): missing_keys = [k for k in missing_keys if k not in missing_in_group] # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if cls._keys_to_ignore_on_load_missing is not None: for pat in cls._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if cls._keys_to_ignore_on_load_unexpected is not None: for pat in cls._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if hf_quantizer is not None: missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix) # retrieve weights on meta device and put them back on CPU. # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step if low_cpu_mem_usage: for key in missing_keys: if key in list(model_state_dict.keys()): key = key elif f"{prefix}.{key}" in list(model_state_dict.keys()): key = f"{prefix}.{key}" elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()): key = ".".join(key.split(".")[1:]) param = model_state_dict[key] # upcast in fp32 if any target_dtype = dtype if ( keep_in_fp32_modules is not None and dtype == torch.float16 and any( module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules ) ): target_dtype = torch.float32 if param.device == torch.device("meta"): value = torch.empty(*param.size(), dtype=target_dtype) if ( not is_quantized or getattr(hf_quantizer, "requires_parameters_quantization", False) or not hf_quantizer.check_quantized_param( model, param_value=value, param_name=key, state_dict={} ) ): set_module_tensor_to_device(model, key, "cpu", value) else: hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys) # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights. if _fast_init: if not ignore_mismatched_sizes: if remove_prefix_from_model: _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys] elif add_prefix_to_model: _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys] else: _loaded_keys = loaded_keys not_initialized_submodules = set_initialized_submodules(model, _loaded_keys) # If we're about to tie the output embeds to the input embeds we don't need to init them if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings: output_embeddings = model.get_output_embeddings() if output_embeddings is not None: # Still need to initialize if there is a bias term since biases are not tied. if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None: output_embeddings._is_hf_initialized = True else: not_initialized_submodules = dict(model.named_modules()) # This will only initialize submodules that are not marked as initialized by the line above. if is_deepspeed_zero3_enabled() and not is_quantized: import deepspeed not_initialized_parameters = list( set( itertools.chain.from_iterable( submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values() ) ) ) with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0): model.apply(model._initialize_weights) else: model.apply(model._initialize_weights) # Set some modules to fp32 if any if keep_in_fp32_modules is not None: for name, param in model.named_parameters(): if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules): # param = param.to(torch.float32) does not work here as only in the local scope. param.data = param.data.to(torch.float32) # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) base_model_expected_keys = list(model_to_load.state_dict().keys()) if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys): raise ValueError( "The state dictionary of the model you are trying to load is corrupted. Are you sure it was " "properly saved?" ) if device_map is not None: device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()} def _find_mismatched_keys( state_dict, model_state_dict, loaded_keys, add_prefix_to_model, remove_prefix_from_model, ignore_mismatched_sizes, ): mismatched_keys = [] if ignore_mismatched_sizes: for checkpoint_key in loaded_keys: # If the checkpoint is sharded, we may not have the key here. if checkpoint_key not in state_dict: continue model_key = checkpoint_key if remove_prefix_from_model: # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it. model_key = f"{prefix}.{checkpoint_key}" elif add_prefix_to_model: # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it. model_key = ".".join(checkpoint_key.split(".")[1:]) if ( model_key in model_state_dict and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape ): if ( state_dict[checkpoint_key].shape[-1] == 1 and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel() ): # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences. # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights. pass else: mismatched_keys.append( (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) ) del state_dict[checkpoint_key] return mismatched_keys if resolved_archive_file is not None: folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1]) else: folder = None if device_map is not None and is_safetensors: param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix) str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32" if sharded_metadata is None: archive_file = ( resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file ) weight_map = {p: archive_file for p in original_loaded_keys} else: weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()} offload_index = { p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype} for p, f in weight_map.items() if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk" } if state_dict is not None: # Whole checkpoint mismatched_keys = _find_mismatched_keys( state_dict, model_state_dict, original_loaded_keys, add_prefix_to_model, remove_prefix_from_model, ignore_mismatched_sizes, ) error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix) offload_index = None else: # Sharded checkpoint or whole but low_cpu_mem_usage==True # This should always be a list but, just to be sure. if not isinstance(resolved_archive_file, list): resolved_archive_file = [resolved_archive_file] error_msgs = [] mismatched_keys = [] if not is_safetensors: offload_index = {} if device_map is not None and "disk" in device_map.values() else None if offload_state_dict: state_dict_folder = tempfile.mkdtemp() state_dict_index = {} else: state_dict_folder = None state_dict_index = None if is_sharded_safetensors: disk_only_shard_files = get_disk_only_shard_files( device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix ) disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files] else: disk_only_shard_files = [] if len(resolved_archive_file) > 1: resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards") for shard_file in resolved_archive_file: # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload. if shard_file in disk_only_shard_files: continue state_dict = load_state_dict(shard_file, is_quantized=is_quantized) # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not # matching the weights in the model. mismatched_keys += _find_mismatched_keys( state_dict, model_state_dict, original_loaded_keys, add_prefix_to_model, remove_prefix_from_model, ignore_mismatched_sizes, ) if low_cpu_mem_usage: if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized: for key, param in model_to_load.state_dict().items(): if param.device == torch.device("meta"): set_module_tensor_to_device( model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype) ) else: new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model( model_to_load, state_dict, loaded_keys, start_prefix, expected_keys, device_map=device_map, offload_folder=offload_folder, offload_index=offload_index, state_dict_folder=state_dict_folder, state_dict_index=state_dict_index, dtype=dtype, hf_quantizer=hf_quantizer, is_safetensors=is_safetensors, keep_in_fp32_modules=keep_in_fp32_modules, unexpected_keys=unexpected_keys, ) error_msgs += new_error_msgs else: error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix) # force memory release del state_dict gc.collect() if offload_index is not None and len(offload_index) > 0: if model != model_to_load: # We need to add the prefix of the base model prefix = cls.base_model_prefix if not is_safetensors: for weight_name in offload_index: shutil.move( os.path.join(offload_folder, f"{weight_name}.dat"), os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"), ) offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()} if not is_safetensors: save_offload_index(offload_index, offload_folder) offload_index = None if offload_state_dict: # Load back temporarily offloaded state dict load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder) shutil.rmtree(state_dict_folder) if len(error_msgs) > 0: error_msg = "\n\t".join(error_msgs) if "size mismatch" in error_msg: error_msg += ( "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." ) raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") if len(unexpected_keys) > 0: archs = [] if model.config.architectures is None else model.config.architectures warner = logger.warning if model.__class__.__name__ in archs else logger.info warner( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False): module_keys = {".".join(key.split(".")[:-1]) for key in names} # torch.nn.ParameterList is a special case where two parameter keywords # are appended to the module name, *e.g.* bert.special_embeddings.0 module_keys = module_keys.union( {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()} ) retrieved_modules = [] # retrieve all modules that has at least one missing weight name for name, module in self.named_modules(): if remove_prefix: _prefix = f"{self.base_model_prefix}." name = name[len(_prefix) :] if name.startswith(_prefix) else name elif add_prefix: name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix if name in module_keys: retrieved_modules.append(module) return retrieved_modules @staticmethod def _load_pretrained_model_low_mem( model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None ): """ This is an experimental function that loads the model using ~1.x model size CPU memory Before you call it do: 1. save which state_dict keys are available 2. drop state_dict before model is created, since the latter takes 1x model size memory Here then we continue: 3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict 4. load state_dict 2nd time 5. replace the params/buffers from the state_dict Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To handle bitsandbytes, needs non-empty hf_quantizer argument. """ _move_model_to_meta(model, loaded_state_dict_keys, start_prefix) state_dict = load_state_dict(resolved_archive_file) expected_keys = loaded_state_dict_keys # plug for missing expected_keys. TODO: replace with proper keys error_msgs = _load_state_dict_into_meta_model( model, state_dict, loaded_state_dict_keys, start_prefix, expected_keys=expected_keys, hf_quantizer=hf_quantizer, ) return error_msgs @classmethod def register_for_auto_class(cls, auto_class="AutoModel"): """ Register this class with a given auto class. This should only be used for custom models as the ones in the library are already mapped with an auto class. This API is experimental and may have some slight breaking changes in the next releases. Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`): The auto class to register this new model with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class def to_bettertransformer(self) -> "PreTrainedModel": """ Converts the model to use [PyTorch's native attention implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a subset of all Transformers models are supported. PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2). Returns: [`PreTrainedModel`]: The model converted to BetterTransformer. """ if not is_optimum_available(): raise ImportError("The package `optimum` is required to use Better Transformer.") from optimum.version import __version__ as optimum_version if version.parse(optimum_version) < version.parse("1.7.0"): raise ImportError( f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found." ) from optimum.bettertransformer import BetterTransformer return BetterTransformer.transform(self) def reverse_bettertransformer(self): """ Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is used, for example in order to save the model. Returns: [`PreTrainedModel`]: The model converted back to the original modeling. """ if not is_optimum_available(): raise ImportError("The package `optimum` is required to use Better Transformer.") from optimum.version import __version__ as optimum_version if version.parse(optimum_version) < version.parse("1.7.0"): raise ImportError( f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found." ) from optimum.bettertransformer import BetterTransformer return BetterTransformer.reverse(self) def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask): """ Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given. """ # Skip the check during tracing. if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling(): return if (attention_mask is not None) or (self.config.pad_token_id is None): return # Check only the first and last input IDs to reduce overhead. if self.config.pad_token_id in input_ids[:, [-1, 0]]: warn_string = ( "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See " "https://huggingface.co/docs/transformers/troubleshooting" "#incorrect-output-when-padding-tokens-arent-masked." ) # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an # attention_mask or not. In this case, we should still show a warning because this is a rare case. if ( (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id) or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id) or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id) ): warn_string += ( f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical " f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), " f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded." ) logger.warning_once(warn_string) @property def _is_quantized_training_enabled(self): warnings.warn( "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead", FutureWarning, ) if not hasattr(self, "hf_quantizer"): return False return self.hf_quantizer.is_trainable PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub) if PreTrainedModel.push_to_hub.__doc__ is not None: PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format( object="model", object_class="AutoModel", object_files="model file" ) class PoolerStartLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: `torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end logits from sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): The hidden states of the first tokens for the labeled span. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the first token for the labeled span. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides `start_states`. Returns: `torch.FloatTensor`: The end logits for SQuAD. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): The hidden states of the first tokens for the labeled span. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the first token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides `start_states`. Returns: `torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x @dataclass class SquadHeadOutput(ModelOutput): """ Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Positions of the first token for the labeled span. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Positions of the last token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Whether the question has a possible answer in the paragraph or not. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. return_dict (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return SquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, ) class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: - `"last"` -- Take the last token hidden state (like XLNet) - `"first"` -- Take the first token hidden state (like Bert) - `"mean"` -- Take the mean of all tokens hidden states - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - `"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes (otherwise to `config.hidden_size`). - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, another string or `None` will add no activation. - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else Identity() self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: `torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def unwrap_model(model: nn.Module, recursive: bool = False) -> nn.Module: """ Recursively unwraps a model from potential containers (as used in distributed training). Args: model (`torch.nn.Module`): The model to unwrap. recursive (`bool`, *optional*, defaults to `False`): Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers recursively, not just the top-level distributed containers. """ # Use accelerate implementation if available (should always be the case when using torch) # This is for pytorch, as we also have to handle things like dynamo if is_accelerate_available(): kwargs = {} if recursive: if not is_accelerate_available("0.29.0"): raise RuntimeError( "Setting `recursive=True` to `unwrap_model` requires `accelerate` v0.29.0. Please upgrade your version of accelerate" ) else: kwargs["recursive"] = recursive return extract_model_from_parallel(model, **kwargs) else: # since there could be multiple levels of wrapping, unwrap recursively if hasattr(model, "module"): return unwrap_model(model.module) else: return model def expand_device_map(device_map, param_names, start_prefix): """ Expand a device map to return the correspondance parameter name to device. """ new_device_map = {} param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)] for module, device in device_map.items(): new_device_map.update( {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""} ) return new_device_map def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix): """ Returns the list of shard files containing only weights offloaded to disk. """ weight_map = { p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix) } files_content = collections.defaultdict(list) for weight_name, filename in weight_map.items(): while len(weight_name) > 0 and weight_name not in device_map: weight_name = ".".join(weight_name.split(".")[:-1]) files_content[filename].append(device_map[weight_name]) return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]