Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import random | |
# Initialize model | |
model_path = hf_hub_download( | |
repo_id="AstroMLab/AstroSage-8B-GGUF", | |
filename="AstroSage-8B-Q8_0.gguf" | |
) | |
llm = Llama( | |
model_path=model_path, | |
n_ctx=2048, | |
n_threads=4, | |
chat_format="llama-3", | |
seed=42, | |
f16_kv=True, | |
logits_all=False, | |
use_mmap=True, | |
use_gpu=True | |
) | |
# Placeholder responses for when context is empty | |
GREETING_MESSAGES = [ | |
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", | |
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", | |
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", | |
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", | |
] | |
def get_random_greeting(): | |
return random.choice(GREETING_MESSAGES) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
# Stream response from LLM | |
stream = llm.create_chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True # Enable streaming | |
) | |
response_content = "" | |
for chunk in stream: | |
response_content += chunk["choices"][0]["delta"]["content"] | |
yield response_content # Stream each chunk back to the frontend | |
except Exception as e: | |
yield f"Error: {e}" | |
def clear_context(): | |
greeting_message = get_random_greeting() | |
return [("", greeting_message)], "" | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.HTML("<div class='header-text'>AstroSage-LLAMA-3.1-8B</div><div class='subheader'>Astronomy-Specialized Chatbot</div>") | |
chatbot = gr.Chatbot(height=400) | |
msg = gr.Textbox(placeholder="Ask about astronomy, astrophysics, or cosmology...", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False) as advanced_settings: | |
system_msg = gr.Textbox( | |
value="You are AstroSage, a highly knowledgeable AI assistant specialized in astronomy, astrophysics, and cosmology. Provide accurate, engaging, and educational responses about space science and the universe.", | |
label="System Message", | |
lines=3 | |
) | |
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max Tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") | |
# Automatically handle submission on Enter key press with streaming | |
def handle_submit(message, history, system_message, max_tokens, temperature, top_p): | |
history.append((message, None)) # Append user's message first | |
# Stream the assistant's response and update the history | |
for response in respond(message, history, system_message, max_tokens, temperature, top_p): | |
history[-1] = (message, response) | |
yield history, "" # Yield updated history to display in the chatbox | |
# Use the new Gradio `chatbot.update` pattern by returning the updated value | |
msg.submit( | |
handle_submit, | |
inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p], | |
outputs=[chatbot, msg], | |
queue=False | |
) | |
# Automatically clear context on reload with a greeting | |
demo.load(lambda: clear_context(), None, [chatbot, msg]) | |
if __name__ == "__main__": | |
demo.launch() | |